77 resultados para Capture and access multimedia applications
Resumo:
Since 1997, EQUAL has supported over forty ageing and disability-related research projects, many of which demonstrating an inclusive design dimension. Some of these projects have had a significant influence on policy and practice. However, less progress has been made in promoting ageing-related research in scientific areas. Building on the experience gained in developing the inclusive design research community, SPARC was created with the aim to provide opportunities for introducing newcomers across a wide range of engineering and biological fields to ageing and disability-related research. Through an awards scheme, SPARC provides financial support, mentoring, editorial assistance and a platform for dissemination and access to international activities. In addition, SPARC organises national and international workshops that showcase the latest research and educates individuals, society and government about the value of ageing and disability-related research.
Resumo:
The Java language first came to public attention in 1995. Within a year, it was being speculated that Java may be a good language for parallel and distributed computing. Its core features, including being objected oriented and platform independence, as well as having built-in network support and threads, has encouraged this view. Today, Java is being used in almost every type of computer-based system, ranging from sensor networks to high performance computing platforms, and from enterprise applications through to complex research-based.simulations. In this paper the key features that make Java a good language for parallel and distributed computing are first discussed. Two Java-based middleware systems, namely MPJ Express, an MPI-like Java messaging system, and Tycho, a wide-area asynchronous messaging framework with an integrated virtual registry are then discussed. The paper concludes by highlighting the advantages of using Java as middleware to support distributed applications.
Resumo:
Increasingly, distributed systems are being used to host all manner of applications. While these platforms provide a relatively cheap and effective means of executing applications, so far there has been little work in developing tools and utilities that can help application developers understand problems with the supporting software, or the executing applications. To fully understand why an application executing on a distributed system is not behaving as would be expected it is important that not only the application, but also the underlying middleware, and the operating system are analysed too, otherwise issues could be missed and certainly overall performance profiling and fault diagnoses would be harder to understand. We believe that one approach to profiling and the analysis of distributed systems and the associated applications is via the plethora of log files generated at runtime. In this paper we report on a system (Slogger), that utilises various emerging Semantic Web technologies to gather the heterogeneous log files generated by the various layers in a distributed system and unify them in common data store. Once unified, the log data can be queried and visualised in order to highlight potential problems or issues that may be occurring in the supporting software or the application itself.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).
Resumo:
The recent global economic crisis is often associated with the development and pricing of mortgage-backed securities (i.e. MBSs) and underlying products (i.e. sub-prime mortgages). This work uses a rich database of MBS issues and represents the first attempt to price commercial MBSs (i.e. CMBSs) in the European market. Our results are consistent with research carried out in the US market and we find that bond-, mortgage-, real estate-related and multinational characteristics show different degrees of significance in explaining European CMBS spreads at issuance. Multiple linear regression analysis using a databank of CMBSs issued between 1997 and 2007 indicates a strong relationship with bond-related factors, followed by real estate and mortgage market conditions. We also find that multinational factors are significant, with country of issuance, collateral location and access to more liquid markets all being important in explaining the cost of secured funding for real estate companies. As floater coupon tranches tend to be riskier and exhibit higher spreads, we also estimate a model using this sub-set of data and results hold, hence reinforcing our findings. Finally, we estimate our model for both tranches A and B and find that real estate factors become relatively more important for the riskier investment products.
Resumo:
In this paper we describe how to cope with the delays inherent in a real time control system for a steerable stereo head/eye platform. A purposive and reactive system requires the use of fast vision algorithms to provide the controller with the error signals to drive the platform. The time-critical implementation of these algorithms is necessary, not only to enable short latency reaction to real world events, but also to provide sufficiently high frequency results with small enough delays that controller remain stable. However, even with precise knowledge of that delay, nonlinearities in the plant make modelling of that plant impossible, thus precluding the use of a Smith Regulator. Moreover, the major delay in the system is in the feedback (image capture and vision processing) rather than feed forward (controller) loop. Delays ranging between 40msecs and 80msecs are common for the simple 2D processes, but might extend to several hundred milliseconds for more sophisticated 3D processes. The strategy presented gives precise control over the gaze direction of the cameras despite the lack of a priori knowledge of the delays involved. The resulting controller is shown to have a similar structure to the Smith Regulator, but with essential modifications.
Resumo:
The Mitigation Options for Phosphorus and Sediment (MOPS) project investigated the effectiveness of within-field control measures (tramline management, straw residue management, type of cultivation and direction, and vegetative buffers) in terms of mitigating sediment and phosphorus loss from winter-sown combinable cereal crops using three case study sites. To determine the cost of the approaches, simple financial spreadsheet models were constructed at both farm and regional levels. Taking into account crop areas, crop rotation margins per hectare were calculated to reflect the costs of crop establishment, fertiliser and agro-chemical applications, harvesting, and the associated labour and machinery costs. Variable and operating costs associated with each mitigation option were then incorporated to demonstrate the impact on the relevant crop enterprise and crop rotation margins. These costs were then compared to runoff, sediment and phosphorus loss data obtained from monitoring hillslope-length scale field plots. Each of the mitigation options explored in this study had potential for reducing sediment and phosphorus losses from arable land under cereal crops. Sediment losses were reduced from between 9 kg ha−1 to as much as 4780 kg ha−1 with a corresponding reduction in phosphorus loss from 0.03 kg ha−1 to 2.89 kg ha−1. In percentage terms reductions of phosphorus were between 9% and 99%. Impacts on crop rotation margins also varied. Minimum tillage resulted in cost savings (up to £50 ha−1) whilst other options showed increased costs (up to £19 ha−1 for straw residue incorporation). Overall, the results indicate that each of the options has potential for on-farm implementation. However, tramline management appeared to have the greatest potential for reducing runoff, sediment, and phosphorus losses from arable land (between 69% and 99%) and is likely to be considered cost-effective with only a small additional cost of £2–4 ha−1, although further work is needed to evaluate alternative tramline management methods. Tramline management is also the only option not incorporated within current policy mechanisms associated with reducing soil erosion and phosphorus loss and in light of its potential is an approach that should be encouraged once further evidence is available.
Resumo:
When villagers extract resources, such as fuelwood, fodder, or medicinal plants from forests, their decisions over where and how much to extract are influenced by market conditions, their particular opportunity costs of time, minimum consumption needs, and access to markets. This paper develops an optimization model of villagers’ extraction behavior that clarifies how, and under what conditions, policies that create incentives such as improved returns to extraction in a buffer zone might be used instead of adversarial enforcement efforts to protect a forest’s pristine ‘‘inner core.’’
Resumo:
The emergence of high-density wireless local area network (WLAN) deployments in recent years is a testament to the insatiable demands for wireless broadband services. The increased density of WLAN deployments brings with it the potential of increased capacity, extended coverage, and exciting new applications. However, the corresponding increase in contention and interference can significantly degrade throughputs, unless new challenges in channel assignment are effectively addressed. In this paper, a client-assisted channel assignment scheme that can provide enhanced throughput is proposed. A study on the impact of interference on throughput with multiple access points (APs)is first undertaken using a novel approach that determines the possibility of parallel transmissions. A metric with a good correlation to the throughput, i.e., the number of conflict pairs, is used in the client-assisted minimum conflict pairs (MICPA) scheme. In this scheme, measurements from clients are used to assist the AP in determining the channel with the minimum number of conflict pairs to maximize its expected throughput. Simulation results show that the client-assisted MICPA scheme can provide meaningful throughput improvements over other schemes that only utilize the AP’s measurements.
Resumo:
Sri Lanka's participation rates in higher education are low and have risen only slightly in the last few decades; the number of places for higher education in the state university system only caters for around 3% of the university entrant age cohort. The literature reveals that the highly competitive global knowledge economy increasingly favours workers with high levels of education who are also lifelong learners. This lack of access to higher education for a sizable proportion of the labour force is identified as a severe impediment to Sri Lanka‟s competitiveness in the global knowledge economy. The literature also suggests that Information and Communication Technologies are increasingly relied upon in many contexts in order to deliver flexible learning, to cater especially for the needs of lifelong learners in today‟s higher educational landscape. The government of Sri Lanka invested heavily in ICTs for distance education during the period 2003-2009 in a bid to increase access to higher education; but there has been little research into the impact of this. To address this lack, this study investigated the impact of ICTs on distance education in Sri Lanka with respect to increasing access to higher education. In order to achieve this aim, the research focused on Sri Lanka‟s effort from three perspectives: policy perspective, implementation perspective and user perspective. A multiple case study research using an ethnographic approach was conducted to observe Orange Valley University‟s and Yellow Fields University‟s (pseudonymous) implementation of distance education programmes using questionnaires, qualitative interviewing and document analysis. In total, data for the analysis was collected from 129 questionnaires, 33 individual interviews and 2 group interviews. The research revealed that ICTs have indeed increased opportunities for higher education; but mainly for people of affluent families from the Western Province. Issues identified were categorized under the themes: quality assurance, location, language, digital literacies and access to resources. Recommendations were offered to tackle the identified issues in accordance with the study findings. The study also revealed the strong presence of a multifaceted digital divide in the country. In conclusion, this research has shown that iii although ICT-enabled distance education has the potential to increase access to higher education the present implementation of the system in Sri Lanka has been less than successful.
Resumo:
In order to improve the quality of healthcare services, the integrated large-scale medical information system is needed to adapt to the changing medical environment. In this paper, we propose a requirement driven architecture of healthcare information system with hierarchical architecture. The system operates through the mapping mechanism between these layers and thus can organize functions dynamically adapting to user’s requirement. Furthermore, we introduce the organizational semiotics methods to capture and analyze user’s requirement through ontology chart and norms. Based on these results, the structure of user’s requirement pattern (URP) is established as the driven factor of our system. Our research makes a contribution to design architecture of healthcare system which can adapt to the changing medical environment.
Resumo:
Background The persistence of rural-urban disparities in child nutrition outcomes in developing countries alongside rapid urbanisation and increasing incidence of child malnutrition in urban areas raises an important health policy question - whether fundamentally different nutrition policies and interventions are required in rural and urban areas. Addressing this question requires an enhanced understanding of the main drivers of rural-urban disparities in child nutrition outcomes especially for the vulnerable segments of the population. This study applies recently developed statistical methods to quantify the contribution of different socio-economic determinants to rural-urban differences in child nutrition outcomes in two South Asian countries – Bangladesh and Nepal. Methods Using DHS data sets for Bangladesh and Nepal, we apply quantile regression-based counterfactual decomposition methods to quantify the contribution of (1) the differences in levels of socio-economic determinants (covariate effects) and (2) the differences in the strength of association between socio-economic determinants and child nutrition outcomes (co-efficient effects) to the observed rural-urban disparities in child HAZ scores. The methodology employed in the study allows the covariate and coefficient effects to vary across entire distribution of child nutrition outcomes. This is particularly useful in providing specific insights into factors influencing rural-urban disparities at the lower tails of child HAZ score distributions. It also helps assess the importance of individual determinants and how they vary across the distribution of HAZ scores. Results There are no fundamental differences in the characteristics that determine child nutrition outcomes in urban and rural areas. Differences in the levels of a limited number of socio-economic characteristics – maternal education, spouse’s education and the wealth index (incorporating household asset ownership and access to drinking water and sanitation) contribute a major share of rural-urban disparities in the lowest quantiles of child nutrition outcomes. Differences in the strength of association between socio-economic characteristics and child nutrition outcomes account for less than a quarter of rural-urban disparities at the lower end of the HAZ score distribution. Conclusions Public health interventions aimed at overcoming rural-urban disparities in child nutrition outcomes need to focus principally on bridging gaps in socio-economic endowments of rural and urban households and improving the quality of rural infrastructure. Improving child nutrition outcomes in developing countries does not call for fundamentally different approaches to public health interventions in rural and urban areas.
Resumo:
This article has several interrelated goals, all of which relate to an attempt at understanding why monolingualism is taken to be the default norm in linguistic inquiry (from sociolinguistics to formal linguistic theorizing). With others, I will take the position that comparing instances of multilingualism to so-called monolingualism is an unfair and inevitably inaccurate comparison since, among other variables, the social environments and access to input of multilinguals compared to monolinguals is most often unavoidably different (cf. Cruz-Ferreira 2006; Edwards 2004). Additionally, I will attempt to demonstrate that even so-called monolinguals have access to a variety of grammars related to different registers of speech and, therefore, are not truly monolingual in the sense that they poses one monolithic grammatical competence. Taken together, the present discussion questions both the default status of monolingualism as well as the functional adequacy of the term monolingualism.
Resumo:
n the past decade, the analysis of data has faced the challenge of dealing with very large and complex datasets and the real-time generation of data. Technologies to store and access these complex and large datasets are in place. However, robust and scalable analysis technologies are needed to extract meaningful information from these datasets. The research field of Information Visualization and Visual Data Analytics addresses this need. Information visualization and data mining are often used complementary to each other. Their common goal is the extraction of meaningful information from complex and possibly large data. However, though data mining focuses on the usage of silicon hardware, visualization techniques also aim to access the powerful image-processing capabilities of the human brain. This article highlights the research on data visualization and visual analytics techniques. Furthermore, we highlight existing visual analytics techniques, systems, and applications including a perspective on the field from the chemical process industry.