110 resultados para CT MRT Lunge Ventilation Parameter quantitativ ARDS
Resumo:
Research shows that poor indoor air quality (IAQ) in school buildings can cause a reduction in the students' performance assessed by short-term computer-based tests: whereas good air quality in classrooms can enhance children's concentration and also teachers' productivity. Investigation of air quality in classrooms helps us to characterise pollutant levels and implement corrective measures. Outdoor pollution, ventilation equipment, furnishings, and human activities affect IAQ. In school classrooms, the occupancy density is high (1.8-2.4m(2)/person) compared to offices (10 m(2)/person). Ventilation systems expend energy and there is a trend to save energy by reducing ventilation rates. We need to establish the minimum acceptable level of fresh air required for the health of the occupants. This paper describes a project, which will aim to investigate the effect of IAQ and ventilation rates on pupils' performance and health using psychological tests. The aim is to recommend suitable ventilation rates for classrooms and examine the suitability of the air quality guidelines for classrooms. The air quality, ventilation rates and pupils' performance in classrooms will be evaluated in parallel measurements. In addition, Visual Analogue Scales will be used to assess subjective perception of the classroom environment and SBS symptoms. Pupil performance will be measured with Computerised Assessment Tests (CAT), and Pen and Paper Performance Tasks while physical parameters of the classroom environment will be recorded using an advanced data logging system. A total number of 20 primary schools in the Reading area are expected to participate in the present investigation, and the pupils participating in this study will be within the age group of 9-11 years. On completion of the project, based oil the overall data recommendations for suitable ventilation rates for schools will be formulated. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The work reported in this paper is motivated by biomimetic inspiration - the transformation of patterns. The major issue addressed is the development of feasible methods for transformation based on a macroscopic tool. The general requirement for the feasibility of the transformation method is determined by classifying pattern formation approaches an their characteristics. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some robotic agents are introduced. A feasible method for transforming patterns geometrically, based on the macroscopic parameter operation of a swarm is considered. The transformation method is applied to a swarm model which lends itself to the transformation technique. Simulation studies are developed to validate the feasibility of the approach, and do indeed confirm the approach.
Resumo:
An analysis of averaging procedures is presented for an approximate Riemann solver for the equations governing the compressible flow of a real gas. This study extends earlier work for the Euler equations with ideal gases.
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.
Resumo:
We study the asymptotic behaviour of the principal eigenvalue of a Robin (or generalised Neumann) problem with a large parameter in the boundary condition for the Laplacian in a piecewise smooth domain. We show that the leading asymptotic term depends only on the singularities of the boundary of the domain, and give either explicit expressions or two-sided estimates for this term in a variety of situations.
Resumo:
This article addresses the need for providing good standards of indoor air quality (IAQ) in buildings from the view point of health, well-being and productivity of building occupants. It briefly outlines the role of ventilation in achieving the required IAQ targets and discusses the performance of different types of ventilation systems in use. As a result of new energy efficiency directives and legislations in Europe and elsewhere, the ventilation energy component of HVAC systems has increased in relative terms and this article introduces a method for evaluating the performance air distribution systems that is based on ventilation and energy effectiveness. A range of ventilation systems are discussed, including mechanical and natural ventilation, and results for more recently developed mechanical air distribution systems are compared with conventional systems. The article provides an assessment and comparison of some of these systems with reference to ventilation performance and energy efficiency
Resumo:
A new parameter-estimation algorithm, which minimises the cross-validated prediction error for linear-in-the-parameter models, is proposed, based on stacked regression and an evolutionary algorithm. It is initially shown that cross-validation is very important for prediction in linear-in-the-parameter models using a criterion called the mean dispersion error (MDE). Stacked regression, which can be regarded as a sophisticated type of cross-validation, is then introduced based on an evolutionary algorithm, to produce a new parameter-estimation algorithm, which preserves the parsimony of a concise model structure that is determined using the forward orthogonal least-squares (OLS) algorithm. The PRESS prediction errors are used for cross-validation, and the sunspot and Canadian lynx time series are used to demonstrate the new algorithms.
Resumo:
Little has been reported on the performance of near-far resistant CDMA detectors in the presence of system parameter estimation errors (SPEEs). Starting with the general mathematical model of matched filters, the paper examines the effects of three classes of SPEEs, i.e., time-delay, carrier phase, and carrier frequency errors, on the performance (BER) of an emerging type of near-far resistant coherent DS/SSMA detector, i.e., the linear decorrelating detector. For comparison, the corresponding results for the conventional detector are also presented. It is shown that the linear decorrelating detector can still maintain a considerable performance advantage over the conventional detector even when some SPEEs exist.
Resumo:
We present a novel algorithm for joint state-parameter estimation using sequential three dimensional variational data assimilation (3D Var) and demonstrate its application in the context of morphodynamic modelling using an idealised two parameter 1D sediment transport model. The new scheme combines a static representation of the state background error covariances with a flow dependent approximation of the state-parameter cross-covariances. For the case presented here, this involves calculating a local finite difference approximation of the gradient of the model with respect to the parameters. The new method is easy to implement and computationally inexpensive to run. Experimental results are positive with the scheme able to recover the model parameters to a high level of accuracy. We expect that there is potential for successful application of this new methodology to larger, more realistic models with more complex parameterisations.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.