72 resultados para COW STOMACH


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary nitrate is metabolized to nitrite by bacterial flora on the posterior surface of the tongue leading to increased salivary nitrite concentrations. In the acidic environment of the stomach, nitrite forms nitrous acid, a potent nitrating/nitrosating agent. The aim of this study was to examine the pharmacokinetics of dietary nitrate in relation to the formation of salivary, plasma, and urinary nitrite and nitrate in healthy subjects. A secondary aim was to determine whether dietary nitrate increases the formation of protein-bound 3-nitrotyrosine in plasma, and if dietary nitrate improves platelet function. The pharmacokinetic profile of urinary nitrate excretion indicates total clearance of consumed nitrate in a 24 h period. While urinary, salivary, and plasma nitrate concentrations increased between 4- and 7-fold, a significant increase in nitrite was only detected in saliva (7-fold). High dietary nitrate consumption does not cause a significant acute change in plasma concentrations of 3-nitrotyrosine or in platelet function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Milk is a complex and complete food containing an array of essential nutrients that contribute toward a healthy, balanced diet. Numerous epidemiological studies have revealed that high consumption of milk and dairy products may have protective effects against coronary heart disease (CHD), stroke, diabetes, certain cancers (such as colorectal and bladder cancers), and dementia, although the mechanisms of action are unclear. Despite this epidemiological evidence, milk fatty acid profiles often lead to a negative perception of milk and dairy products. However, altering the fatty acid profile of milk by changing the dairy cow diet is a successful strategy, and intervention studies have shown that this approach may lead to further benefits of milk/dairy consumption. Overall, evidence suggests individuals who consume a greater amount of milk and dairy products have a slightly better health advantage than those who do not consume milk and dairy products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessment of the risk to human health posed by contaminated land may be seriously overestimated if reliant on total pollutant concentration. In vitro extraction tests, such as the physiologically based extraction test (PBET), imitate the physicochemical conditions of the human gastro-intestinal tract and offer a more practicable alternative for routine testing purposes. However, even though passage through the colon accounts for approximately 80% of the transit time through the human digestive tract and the typical contents of the colon in vivo are a carbohydrate-rich aqueous medium with the potential to promote desorption of organic pollutants, PBET comprises stomach and small intestine compartments only. Through addition of an eight-hour colon compartment to PBET and use of a carbohydrate-rich fed-state medium we demonstrated that colon-extended PBET (CE-PBET) in- creased assessments of soil-bound PAH bioaccessibility by up to 50% in laboratory soils and a factor of 4 in field soils. We attribute this increased bioaccessibility to a combination of the additional extraction time and the presence of carbohydrates in the colon compartment, both of which favor PAH desorption from soil. We propose that future assessments of the bioaccessibility of organic pollutants in soils using physiologically based extraction tests should have a colon compartment as in CE-PBET.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal driver of nitrogen (N) losses from the body including excretion and secretion in milk is N intake. However, other covariates may also play a role in modifying the partitioning of N. This study tests the hypothesis that N partitioning in dairy cows is affected by energy and protein interactions. A database containing 470 dairy cow observations was collated from calorimetry experiments. The data include N and energy parameters of the diet and N utilization by the animal. Univariate and multivariate meta-analyses that considered both within and between study effects were conducted to generate prediction equations based on N intake alone or with an energy component. The univariate models showed that there was a strong positive linear relationships between N intake and N excretion in faeces, urine and milk. The slopes were 0.28 faeces N, 0.38 urine N and 0.20 milk N. Multivariate model analysis did not improve the fit. Metabolizable energy intake had a significant positive effect on the amount of milk N in proportion to faeces and urine N, which is also supported by other studies. Another measure of energy considered as a covariate to N intake was diet quality or metabolizability (the concentration of metabolizable energy relative to gross energy of the diet). Diet quality also had a positive linear relationship with the proportion of milk N relative to N excreted in faeces and urine. Metabolizability had the largest effect on faeces N due to lower protein digestibility of low quality diets. Urine N was also affected by diet quality and the magnitude of the effect was higher than for milk N. This research shows that including a measure of diet quality as a covariate with N intake in a model of N execration can enhance our understanding of the effects of diet composition on N losses from dairy cows. The new prediction equations developed in this study could be used to monitor N losses from dairy systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An isotope dilution model for partitioning phenylalanine uptake by the liver of the lactating dairy cow was constructed and solved in the steady state. If assumptions are made, model solution permits calculation of the rate of phenylalanine uptake from portal vein and hepatic arterial blood supply, phenylalanine release into the hepatic vein, phenylalanine oxidation and synthesis, and degradation of hepatic constitutive and export proteins. The model requires the measurement of plasma fow rate through the liver in combination with phenylalanine concentrations and plateau isotopic enrichments in arterial, portal and hepatic plasma during a constant infusion of [1-13C]phenylalanine tracer. The model can be applied to other amino acids with similar metabolic fates and will provide a means for assessing the impact of hepatic metabolism on amino acid availability to peripheral tissues. This is of particular importance for the dairy cow when considering the requirements for milk protein synthesis and the negative environmental impact of excessive nitrogen excretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rats and mice have traditionally been considered one of the most important pests of sugarcane. However, "control" campaigns are rarely specific to the target species, and can have an effect on local wildlife, in particular non-pest rodent species. The objective of this study was to distinguish between rodent species that are pests and those that are not, and to identify patterns of food utilization by the rodents in the sugarcane crop complex. Within the crop complex, subsistence crops like maize, sorghum, rice, and bananas, which are grown alongside the sugarcane, are also subject to rodent damage. Six native rodent species were trapped in the Papaloapan River Basin of the State of Veracruz; the cotton rat (Sigmodon hispidus), the rice rat (Oryzomys couesi), the small rice rat (O. chapmani), the white footed mouse (Peromyscus leucopus), the golden mouse (Reithrodontomys sumichrasti), and the pigmy mouse (Baiomys musculus). In a stomach content analysis, the major food components for the cotton rat, the rice rat and the small rice rat were sugarcane (4.9 to 30.1 %), seed (2.7 to 22.9%), and vegetation (0.9 to 29.8%); while for the golden mouse and the pigmy mouse the stomach content was almost exclusively seed (98 to 100%). The authors consider the first three species to be pests of the sugarcane crop complex, while the last two species are not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the substantial economic and social burden of CVD, the need to modify diet and lifestyle factors to reduce risk has become increasingly important. Milk and dairy products, being one of the main contributors to SFA intake in the UK, are a potential target for dietary SFA reduction. Supplementation of the dairy cow's diet with a source of MUFA or PUFA may have beneficial effects on consumers' CVD risk by partially replacing milk SFA, thus reducing entry of SFA into the food chain. A total of nine chronic human intervention studies have used dairy products, modified through bovine feeding, to establish their effect on CVD risk markers. Of these studies, the majority utilised modified butter as their primary test product and used changes in blood cholesterol concentrations as their main risk marker. Of the eight studies that measured blood cholesterol, four reported a significant reduction in total and LDL-cholesterol (LDL-C) following chronic consumption of modified milk and dairy products. Data from one study suggested that a significant reduction in LDL-C could be achieved in both the healthy and hypercholesterolaemic population. Thus, evidence from these studies suggests that consumption of milk and dairy products with modified fatty acid composition, compared with milk and dairy products of typical milk fat composition, may be beneficial to CVD risk in healthy and hypercholesterolaemic individuals. However, current evidence is insufficient and further work is needed to investigate the complex role of milk and cheese in CVD risk and explore the use of novel markers of CVD risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The administration of probiotic bacteria as nutraceuticals is an area that has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. Many of the health promoting claims attributed to these bacteria are dependent on the cells being both viable and sufficiently numerous in the intestinal tract. The oral administration of most bacteria results in a large loss of viability associated with passage through the stomach, which is attributed to the high acid and bile salt concentrations present. This loss of viability effectively lowers the efficacy of the administered supplement. The formulation of these probiotics into microcapsules is an emerging method to reduce cell death during GI passage, as well as an opportunity to control release of these cells across the intestinal tract. The majority of this technology is based on the immobilization of bacteria into a polymer matrix, which retains its structure in the stomach before degrading and dissolving in the intestine, unlike the diffusion based unloading of most controlled release devices for small molecules. This review shall provide an overview of progress in this field as well as draw attention to areas where studies have fallen short. This will be followed by a discussion of emerging trends in the field, highlighting key areas in which further research is necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well established that the glutamate decarboxylase (GAD) system is central to the survival of Listeria monocytogenes at low pH, both in acidic foods and within the mammalian stomach. The accepted model proposes that under acidic conditions extracellular glutamate is transported into the cell in exchange for an intracellular gamma-aminobutyrate (GABA(i)). The glutamate is then decarboxylated to GABA(i), a reaction that consumes a proton, thereby helping to prevent acidification of the cytoplasm. In this study, we show that glutamate supplementation had no influence on either growth rate at pH 5.0 or survival at pH 2.5 when L. monocytogenes 10403S was grown in a chemically defined medium (DM). In response to acidification, cells grown in DM failed to efflux GABA, even when glutamate was added to the medium. In contrast, in brain heart infusion (BHI), the same strain produced significant extracellular GABA (GABA(e)) in response to acidification. In addition, high levels of GABA(i) (>80 mM) were found in the cytoplasm in response to low pH in both growth media. Medium-swap and medium-mixing experiments revealed that the GABA efflux apparatus was nonfunctional in DM, even when glutamate was present. It was also found that the GadT2D2 antiporter/decarboxylase system was transcribed poorly in DM-grown cultures while overexpression of gadD1T1 and gadD3 occurred in response to pH 3.5. Interestingly, BHI-grown cells did not respond with upregulation of any of the GAD system genes when challenged at pH 3.5. The accumulation of GABA(i) in cells grown in DM in the absence of extracellular glutamate indicates that intracellular glutamate is the source of the GABA(i). These results demonstrate that GABA production can be uncoupled from GABA efflux, a finding that alters the way we should view the operation of bacterial GAD systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to compare the effects of the mixture of Lactobacillus delbrueckii subsp. rhamnosus strain GG, Bifidobacterium lactis Bb12, and inulin on intestinal populations of lactobacilli, bifidobacteria, and enterobacteria in adult and elderly rats fed the same (in quality and quantity) diet. The portal plasma levels of two neuropeptides, neuropeptide Y (NPY) and peptide YY (PYY), were also evaluated to assess the physiological consequences of the synbiotic treatment for the gastrointestinal (GI) tracts of rats of different ages. Adult (n = 24) and elderly (n = 24) male rats were fed the AIN-93 M maintenance diet. After 2 weeks of adaptation, the diet of 12 rats of each age group was supplemented with 8% inulin and with strains GG and Bb12 to provide 2.2 x 10(9) CFU of each strain g(-1) of the diet. Blood and different regions of the GI tract were sampled from all rats after 21 days of the treatment. Treatment with the mixture of strain GG, strain BB12, and inulin induced significantly different changes in the numbers of lactobacilli, bifidobacteria, and enterobacteria of the stomach, small intestine, cecum, and colon microflora. Moreover, the GG, BB12, and inulin mixture increased the concentrations of NPY and PYY for adult rats. For the elderly animals, the PYY concentration was not changed, while the NPY concentration was decreased by treatment with the GG, BB12, and inulin mixture. The results of the present study indicate that the physiological status of the GI tract, and not just diet, has a major role in the regulation of important groups of the GI bacteria community, since even the outcome of the dietary modification with synbiotics depends on the ages of the animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The involvement of type 1 fimbriae in colonisation of the rat gastrointestinal tract in vivo was investigated with Salmonella enterica serotype Enteritidis LA5 and a mutant of LA5 denoted EAV3 unable to elaborate type 1 fimbriae (SEF 21), Rats were given a single dose of LA5 or EAV3 or a 1:1 mixture of both, LA5 was found in higher numbers in the stomach and small intestine than EAV3 at 6 h after infection with a single strain, but not after 6 days, LA5 did not out-compete EAV3 when the strains were administered together. Indeed, after 6 and 21 days, EAV3 was found in the distal small intestine and large intestine in far higher numbers than LA5. These findings suggest that SEF 21 have an important role(s) in the early stages of infection in vivo, However, SEF 21 expression may disadvantage the pathogen in the longer term as indicated by EAV3 out-competing LA5 in the gut at 21 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR.RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. METHODS: We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. KEY RESULTS: The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to approximately 50% of all neurons and to >80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. CONCLUSIONS & INFERENCES: G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although neurokinin 1 receptor antagonists prevent ethanol (EtOH)-induced gastric lesions, the mechanisms by which EtOH releases substance P (SP) and SP damages the mucosa are unknown. We hypothesized that EtOH activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to release SP, which stimulates epithelial neurokinin 1 receptors to generate damaging reactive oxygen species (ROS). SP release was assayed in the mouse stomach, ROS were detected using dichlorofluorescein diacetate, and neurokinin 1 receptors were localized by immunofluorescence. EtOH-induced SP release was prevented by TRPV1 antagonism. High dose EtOH caused lesions, and TRPV1 or neurokinin 1 receptor antagonism and neurokinin 1 receptor deletion inhibited lesion formation. Coadministration of low, innocuous doses of EtOH and SP caused lesions by a TRPV1-independent but neurokinin 1 receptor-dependent process. EtOH, capsaicin, and SP stimulated generation of ROS by superficial gastric epithelial cells expressing neurokinin 1 receptors by a neurokinin 1 receptor-dependent mechanism. ROS scavengers prevented lesions induced by a high EtOH dose or a low EtOH dose plus SP. Gastric lesions are caused by an initial detrimental effect of EtOH, which is damaging only if associated with TRPV1 activation, SP release from sensory nerves, stimulation of neurokinin 1 receptors on epithelial cells, and ROS generation.