165 resultados para COUNTABLY CLOSED FORCING


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The year 2000 radiative forcing (RF) due to changes in O3 and CH4 (and the CH4-induced stratospheric water vapour) as a result of emissions of short-lived gases (oxides of nitrogen (NOx), carbon monoxide and non-methane hydrocarbons) from three transport sectors (ROAD, maritime SHIPping and AIRcraft) are calculated using results from five global atmospheric chemistry models. Using results from these models plus other published data, we quantify the uncertainties. The RF due to short-term O3 changes (i.e. as an immediate response to the emissions without allowing for the long-term CH4 changes) is positive and highest for ROAD transport (31mWm-2) compared to SHIP (24 mWm-2) and AIR (17 mWm-2) sectors in four of the models. All five models calculate negative RF from the CH4 perturbations, with a larger impact from the SHIP sector than for ROAD and AIR. The net RF of O3 and CH4 combined (i.e. including the impact of CH4 on ozone and stratospheric water vapour) is positive for ROAD (+16(±13)(one standard deviation) mWm-2) and AIR (+6(±5) mWm-2) traffic sectors and is negative for SHIP (-18(±10) mWm-2) sector in all five models. Global Warming Potentials (GWP) and Global Temperature change Potentials (GTP) are presented for AIR NOx emissions; there is a wide spread in the results from the 5 chemistry models, and it is shown that differences in the methane response relative to the O3 response drive much of the spread.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of the daily wintertime North Atlantic Oscillation (NAO) index in the 40-yr ECMWF Re-Analysis (ERA-40) is significantly negatively skewed. Dynamical and statistical analyses both suggest that this skewness reflects the presence of two distinct regimes—referred to as “Greenland blocking” and “subpolar jet.” Changes in both the relative occurrence and in the structure of the regimes are shown to contribute to the long-term NAO trend over the ERA-40 period. This is contrasted with the simulation of the NAO in 100-yr control and doubled CO2 integrations of the third climate configuration of the Met Office Unified Model (HadCM3). The model has clear deficiencies in its simulation of the NAO in the control run, so its predictions of future behavior must be treated with caution. However, the subpolar jet regime does become more dominant under anthropogenic forcing and, while this change is small it is clearly statistically significant and does represent a real change in the nature of NAO variability in the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon tetrafluoride (CF4) is included as a greenhouse gas within the Kyoto Protocol. There are significant discrepancies in the reported integrated infrared (IR) absorption cross section of CF4 leading to uncertainty in its contribution to climate change. To reduce this uncertainty, the IR spectrum of CF4 was measured in two different laboratories, in 0 933 hPa of air diluent at 296 +/- 2K over the wavelength range 600-3700 cm(-1) using spectral resolutions of 0.03 or 0.50 cm(-1). There was no discernable effect of diluent gas pressure or spectral resolution on the integrated IR absorption, and a value of the integrated absorption cross section of (1.90 +/- 0.17) x 10(-16) cm(2) molecule(-1) cm(-1) was derived. The radiative efficiency (radiative forcing per ppbv) and GWP (relative to CO2) of CF4 were calculated to be 0.102 W m(-2) ppbv(-1) and 7200 (100 year time horizon). The GWP for CF4 calculated herein is approximately 30% greater than that given by the Intergovernmental Panel on Climate Change (IPCC) [ 2002] partly due to what we believe to be an erroneously low value for the IR absorption strength of CF4 assumed in the calculations adopted by the IPCC. The radiative efficiency of CF4 is predicted to decrease by up to 40% as the CF4 forcing starts to saturate and overlapping absorption by CH4, H2O, and N2O in the atmosphere increases over the period 1750-2100. The radiative forcing attributable to increased CF4 levels in the atmosphere from 1750 to 2000 is estimated to be 0.004 W m(-2) and is predicted to be up to 0.033 W m(-2) from 2000 to 2100, dependent on the scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new digital atlas of the geomorphology of the Namib Sand Sea in southern Africa has been developed. This atlas incorporates a number of databases including a digital elevation model (ASTER and SRTM) and other remote sensing databases that cover climate (ERA-40) and vegetation (PAL and GIMMS). A map of dune types in the Namib Sand Sea has been derived from Landsat and CNES/SPOT imagery. The atlas also includes a collation of geochronometric dates, largely derived from luminescence techniques, and a bibliographic survey of the research literature on the geomorphology of the Namib dune system. Together these databases provide valuable information that can be used as a starting point for tackling important questions about the development of the Namib and other sand seas in the past, present and future.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimal and the zero-forcing beamformers are two commonly used algorithms in the subspace-based blind beamforming technology. The optimal beamformer is regarded as the algorithm with the best output SINR. The zero-forcing algorithm emphasizes the co-channel interference cancellation. This paper compares the performance of these two algorithms under some practical conditions: the effect of the finite data length and the existence of the angle estimation error. The investigation reveals that the zero-forcing algorithm can be more robust in the practical environment than the optimal algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite measurements of the radiation budget and data from the U.S. National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis are used to investigate the links between anomalous cloud radiative forcing over the tropical west Pacific warm pool and the tropical dynamics and sea surface temperature (SST) distribution during 1998. The ratio, N, of the shortwave cloud forcing (SWCF) to longwave cloud forcing (LWCF) (N = −SWCF/LWCF) is used to infer information on cloud altitude. A higher than average N during 1998 appears to be related to two separate phenomena. First, dynamic regime-dependent changes explain high values of N (associated with low cloud altitude) for small magnitudes of SWCF and LWCF (low cloud fraction), which reflect the unusual occurrence of mean subsiding motion over the tropical west Pacific during 1998, associated with the anomalous SST distribution. Second, Tropics-wide long-term changes in the spatial-mean cloud forcing, independent of dynamic regime, explain the higher values of N during both 1998 and in 1994/95. The changes in dynamic regime and their anomalous structure in 1998 are well simulated by version HadAM3 of the Hadley Centre climate model, forced by the observed SSTs. However, the LWCF and SWCF are poorly simulated, as are the interannual changes in N. It is argued that improved representation of LWCF and SWCF and their dependence on dynamical forcing are required before the cloud feedbacks simulated by climate models can be trusted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explosive volcanic eruptions cause episodic negative radiative forcing of the climate system. Using coupled atmosphere-ocean general circulation models (AOGCMs) subjected to historical forcing since the late nineteenth century, previous authors have shown that each large volcanic eruption is associated with a sudden drop in ocean heat content and sea-level from which the subsequent recovery is slow. Here we show that this effect may be an artefact of experimental design, caused by the AOGCMs not having been spun up to a steady state with volcanic forcing before the historical integrations begin. Because volcanic forcing has a long-term negative average, a cooling tendency is thus imposed on the ocean in the historical simulation. We recommend that an extra experiment be carried out in parallel to the historical simulation, with constant time-mean historical volcanic forcing, in order to correct for this effect and avoid misinterpretation of ocean heat content changes