105 resultados para COMPUTATIONAL NEURAL-NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the use of neural networks for the control of dynamical systems is considered. Both identification and feedback control aspects are discussed as well as the types of system for which neural networks can provide a useful technique. Multi-layer Perceptron and Radial Basis function neural network types are looked at, with an emphasis on the latter. It is shown how basis function centre selection is a critical part of the implementation process and that multivariate clustering algorithms can be an extremely useful tool for finding centres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the integration of radial basis function (RBF) networks into the industrial software control package Connoisseur. The paper shows the improved modelling capabilities offered by RBF networks within the Connoisseur environment compared to linear modelling techniques such as recursive least squares. The paper also goes on to mention the way this improved modelling capability, obtained through the RBF networks will be utilised within Connoisseur.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of an Artificial Neural Network model of UK domestic appliance energy consumption is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 households during the summer of 2010. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with backpropagation training and has a12:10:24architecture.Model outputs include appliance load profiles which can be applied to the fields of energy planning (micro renewables and smart grids), building simulation tools and energy policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an experimental application of constrained predictive control and feedback linearisation based on dynamic neural networks. It also verifies experimentally a method for handling input constraints, which are transformed by the feedback linearisation mappings. A performance comparison with a PID controller is also provided. The experimental system consists of a laboratory based single link manipulator arm, which is controlled in real time using MATLAB/SIMULINK together with data acquisition equipment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Brain Stimulation has been used in the study of and for treating Parkinson’s Disease (PD) tremor symptoms since the 1980s. In the research reported here we have carried out a comparative analysis to classify tremor onset based on intraoperative microelectrode recordings of a PD patient’s brain Local Field Potential (LFP) signals. In particular, we compared the performance of a Support Vector Machine (SVM) with two well known artificial neural network classifiers, namely a Multiple Layer Perceptron (MLP) and a Radial Basis Function Network (RBN). The results show that in this study, using specifically PD data, the SVM provided an overall better classification rate achieving an accuracy of 81% recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.