51 resultados para CLEFT LIP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Outflowing ions from the polar ionosphere fall into two categories: the classical polar wind and the suprathermal ion flows. The flows in both these categories vary a great deal with altitude. The classical polar wind is supersonic at high altitude: at ∼3 RE geocentric, the observed polar wind is H+ dominated and has a Mach number of 2.5–5.1. At 400–600 km, thermal and suprathermal upward O+ ion fluxes frequently occur at the poleward edge of the nightside auroral oval during magnetically active times. Above 500 km, ions are accelerated transverse to the local geomagnetic field. At 1400 km, transversely accelerated ions are frequently observed in winter nights but rarely appear in the summer. In the dayside cleft above ∼2000 km, ions of all species are transversely heated and upwell with significant number and heat fluxes, forming a cleft ion fountain as they convect across the polar cap. Upwelling ions are observed most (least) frequently in the summer (winter). At yet higher altitudes, energetic (>10 eV to several kiloelectron volts) upflowing H+ and O+ ions are frequently observed, their active time occurrence frequency being as high as 0.7 at auroral latitudes and 0.3 in the polar cap. Their composition, intensity, and angular characteristics vary quantitatively with solar activity, being O+ dominant and more intense near solar maximum. Their resulting ion outflow is dominated by ions below 1 keV and reaches 3.5×10^26 O+ and 7×10^25 H+ ions s^{−1} at magnetically active times (Kp≥5) near solar maximum. In comparison, the estimated polar wind ion outflow at times of moderate solar activity is 7×10^25H+ and 4×10^24 He+ ions s^{−1}. The estimated <10-eV cleft ion fountain flow is 3.8×10^25 O+ and 8.6×10^23 H+ ions s^{−1} near solar maximum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A global, time-dependent, three-dimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly non-Maxwellian, and probably toroidal, ion velocity distributions are expected when D' exceeds about 1.5. The lack of response of the neutral winds to sunward ion drifts in the dawn sector of the auroral oval cause this to be the region most likely to contain toroidal distributions. The maximum in D' is found in the throat region of the convection pattern, where the strong neutral winds of the afternoon sector meet the eastward ion flows of the morning sector. These predictions are of interest, not only to radar scientists searching for non-thermal ionospheric plasma, but also as one possible explanation of the initial heating and upward flows of ions in the cleft ion fountain and nightside auroral oval, both of which are a major source of plasma for the magnetosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion flows from the ionosphere into the magnetosphere fall into two main categories: cold (<1eV), “classical” polar wind and heated (>1eV), suprathermal ion outflows. A wealth of new understanding of these outflows has resulted from the Dynamics Explorer Mission. This review describes both the confirmation of the predicted classical polar wind as well as the revelation of a great variety of low-energy suprathermal outflows: the cleft ion fountain, the nightside auroral fountaion (X-events, toroids and field-aligned flows) and polar cap outflows. The main emphasis is placed on flows at energies below about 50eV, observed by the Retarding Ion Mass Spectrometer (RIMS) on board the Dynamics Explorer 1 satellite; limited comparisons are made with results from other instruments which sample different energy ranges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent observations from the Dynamics Explorer 1 (DE-1) spacecraft have shown that the dayside auroral zone is an important source of very low-energy superthermal O^+ ions for the polar magnetosphere. When observed at 2000- to 5000-km altitude, the core of the O^+ distribution exhibits transverse heating to energies on the order of 10 eV, significant upward heat flux, and subsonic upward flow at significant flux levels exceeding 10^8 cm^{-2}s^{-1}. The term "upwelling ions" has been adopted to label these flows, which stand out in sharp contrast to the light ion polar wind flows observed in the same altitude range in the polar cap and subauroral magnetosphere. We have chosen a typical upwelling ion event for detailed study, correlating retarding ion mass spectrometer observations of the low-energy plasma with energetic ion observations and local electromagnetic field observations. The upwelling ion signature is colocated with the magnetospheric cleft as marked by precipitating energetic magnetosheath ions. The apparent ionospheric heating is clearly linked with the magnetic field signatures of strong field-aligned currents in the vicinity of the dayside polar cap boundary. Electric field and ion plasma measurements indicate that a very strong and localized convection channel or jet exists coincident with the other signatures of this event. These observations indicate that transverse ion heating to temperatures on the order of 10^5 K in the 2000- to 5000-km ionosphere is an important factor in producing heavy ion outflows into the polar magnetosphere. This result contrasts with recent suggestions that electron heating to temperatures of order 10^4 K is the most important parameter with regard to O^+ outflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

What this paper adds? What is already known on the subject? Multi-sensory treatment approaches have been shown to impact outcome measures positively, such as accuracy of speech movement patterns and speech intelligibility in adults with motor speech disorders, as well as in children with apraxia of speech, autism and cerebral palsy. However, there has been no empirical study using multi-sensory treatment for children with speech sound disorders (SSDs) who demonstrate motor control issues in the jaw and orofacial structures (e.g. jaw sliding, jaw over extension, inadequate lip rounding/retraction and decreased integration of speech movements). What this paper adds? Findings from this study indicate that, for speech production disorders where both the planning and production of spatiotemporal parameters of movement sequences for speech are disrupted, multi-sensory treatment programmes that integrate auditory, visual and tactile–kinesthetic information improve auditory and visual accuracy of speech production. The training (practised in treatment) and test words (not practised in treatment) both demonstrated positive change in most participants, indicating generalization of target features to untrained words. It is inferred that treatment that focuses on integrating multi-sensory information and normalizing parameters of speech movements is an effective method for treating children with SSDs who demonstrate speech motor control issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, transparency is hailed as a key to good governance and economic efficiency, with national states implementing new laws to allow citizens access to information. It is therefore paradoxical that, as shown by a series of crises and scandals, modern governments and international agencies frequently have paid only lip-service to such ideals. Since Jeremy Bentham first introduced the concept of transparency into the language in 1789, few societal debates have sparked so much interest within the academic community, and across a variety of disciplines, using different approaches and methodologies. Within these current debates, however, one fact is striking: the lack of historical reflection about the development of the concept of transparency, both as a principle and as applied in practice, prior to its inception. Accordingly, the aim of this special issue is to contribute to historicising the ways in which communication and control over fiscal policy and state finances operated in early modern European polities.