60 resultados para CATIONIC AMPHIPHILE
Resumo:
The reactions of propene with [Zr(cyclopentadienyl)(2)Me](+) have been investigated using density functional theory in order to study the correlation between regioselectivity and site charge in propene polymerisation. The reaction paths of the 1,2 and 2,1 additions of the methyl group to propene have been established. The geometries and energies of the reactants, transition states and products have been obtained using both PBEPBE/LANL2DZ and B3LYP/LANL2DZ methodologies. The results with both density functionals show that the activation energy for 1,2-insertion is lower than that for 2,1-insertion (Fig. 5) and this is consistent with the experiment results. Also for both density functionals, the difference of the thermal dynamic driving forces between the 2,1 product named 2-21 and the 1,2 product named 2-12 is significantly lower than the difference between the energy barriers. It is noted that in the reactants, the Mulliken partial charge on the central carbon atom C2 is positive and it can be concluded that 1,2-insertion is favoured because it can proceed via a cationic reaction.
Resumo:
[(VO)-O-IV(acac) 2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e. g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e. g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of L-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.
Resumo:
Cationic heterobimetallic complexes 5–7 [(PPh3)2Pt(μ-edt)MClCp′)]BF4 (edt=−S(CH2)2S−; 5: M=Rh and Cp′=η5-C5H5; 6: M=Rh and Cp′=η5-C5Me5 and 7: M=Ir and Cp′=η5-C5Me5) were prepared by reaction of [Pt(edt)(PPh3)2] with [Cp′ClM(μ-Cl)2MClCp′] in THF in the presence of two equivalents of AgBF4. The crystalline structure of 5 was determined by X-ray diffraction methods. Cationic heterobimetallic complexes [(PPh3)2Pt(μ-S(CH2)2S)MClCp′)]BF4 (M=Rh, Ir) were prepared. The crystalline structure of [(PPh3)2Pt(μ-edt)RhClCp)]BF4 was determined by X-ray diffraction methods.
Resumo:
The addition of the atropisomeric racemic sulfur compound 4,4′-biphenanthrene-3,3′-dithiol (H2 biphes) to a dichloromethane solution of [{M(μ-OMe)(cod)}2] (M = Rh, Ir, cod = cycloocta-1,5-diene) afforded the dithiolate-bridged complexes [{Rh2(μ-biphes)(cod)2}n] (n = 2 5 or n = 1 6) and [{Ir2(μ-biphes)(cod)2}n]·nCH2Cl27. When 1,1′-binaphthalene-2,2′-dithiol (H2 binas) reacted with [{Ir(μ-OMe)(cod)}2], complex [Ir2(μ-binas)(cod)2] 8 was obtained. Complexes 5 and 6 reacted with carbon monoxide to give the dinuclear tetracarbonyl complex [Rh2(μ-biphes)(CO)4] 9. The reaction of 9 with PR3 provided the mixed-ligand complexes [{Rh2(μ-biphes)(CO)2(PR3)2}2] · xCH2Cl2 (R = Ph, x = 2 10, C6H11, x = 1 11) and [{Rh2(μ-biphes)(CO)3(PR3)}2] · CH2Cl212 (R = OC6H4But-o). The crystal structure of 6 was determined by X-ray diffraction. Reaction of the dithioether ligand Me2biphes with [Rh(cod)2]ClO4 in CH2Cl2 solution afforded the cationic complex [Rh(cod)(Me2biphes)]ClO4 · CH2Cl213. Asymmetric hydroformylation of styrene was performed using the complexes described. The extent of aldehyde conversion ranges from 53 to 100%, with selectivities towards branched aldehydes in the range 51 to 96%. The enantioselectivities were quite low and did not exceed 20%.
Resumo:
The aim of this study is to investigate the separation of astaxanthin from the cells of Phaffia rhodozyma using colloidal gas aphrons (CGA), which are surfactant stabilized microbubbles, in a flotation column. It was reported in previous studies that optimum recoveries are achieved at conditions that favor electrostatic interactions. Therefore, in this study, CGA generated from the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) were applied to suspensions of cells pretreated with NaOH. The different operation modes (batch or continuous) and the effect of volumetric ratio of CGA to feed, initial concentration of feed, operating height, and flow rate of CGA on the separation of astaxanthin were investigated. The volumetric ratio was found to have a significant effect on the separation of astaxanthin for both batch and continuous experiments. Additionally, the effect of homogenization of the cells on the purity of the recovered fractions was investigated, showing that the homogenization resulted in increased purity. Moreover, different concentrations of surfactant were used for the generation of CGA for the recovery of astaxanthin on batch mode; it was found that recoveries up to 98% could be achieved using CGA generated from a CTAB solution 0.8 mM, which is below the CTAB critical micellar concentration (CMC). These results offer important information for the scale-up of the separation of astaxanthin from the cells of P. rhodozyma using CGA.
Resumo:
A focused library of potential hydrogelators each containing two substituted aromatic residues separated by a urea or thiourea linkage have been synthesised and characterized. Six of these novel compounds are highly efficient hydrogelators, forming gels in aqueous solution at low concentrations (0.03–0.60 wt %). Gels were formed through a pH switching methodology, by acidification of a basic solution (pH 14 to ≈4) either by addition of HCl or via the slow hydrolysis of glucono-δ-lactone. Frequently, gelation was accompanied by a dramatic switch in the absorption spectra of the gelators, resulting in a significant change in colour, typically from a vibrant orange to pale yellow. Each of the gels was capable of sequestering significant quantities of the aromatic cationic dye, methylene blue, from aqueous solution (up to 1.02 g of dye per gram of dry gelator). Cryo-transmission electron microscopy of two of the gels revealed an extensive network of high aspect ratio fibers. The structure of the fibers altered dramatically upon addition of 20 wt % of the dye, resulting in aggregation and significant shortening of the fibrils. This study demonstrates the feasibility for these novel gels finding application as inexpensive and effective water purification platforms.
Resumo:
Here we explore the physico-chemical properties of a peptide amphiphile obtained by chemical conjugation of the collagenstimulating peptide KTTKS with 10,12-pentacosadiynoic acid which photopolymerizes as a stable and extended polydiacetylene. We investigate the self-assembly of this new polymer and rationalize its peculiar behavior in terms of a thermal conformational transition. Surprisingly, this polymer shows a thermal transition associated with a non-cooperative increase in b-sheet content at high temperature.
Resumo:
The plant defence proteins α1- and α2-purothionin (Pth) are type 1 thionins from common wheat (Triticum aestivum). These highly homologous proteins possess characteristics common amongst antimicrobial peptides and proteins, that is, cationic charge, amphiphilicity and hydrophobicity. Both α1- and α2-Pth possess the same net charge, but differ in relative hydrophobicity as determined by C18 reversed phase HPLC. Brewster angle microscopy, X-ray and neutron reflectometry, external reflection FTIR and associated surface pressure measurements demonstrated that α1 and α2-Pth interact strongly with condensed phase 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) monolayers at the air/liquid interface. Both thionins disrupted the in-plane structure of the anionic phospholipid monolayer, removing lipid during this process and both penetrated the lipid monolayer in addition to adsorbing as a single protein layer to the lipid head-group. However, analysis of the interfacial structures revealed that the α2-Pth showed faster disruption of the lipid film and removed more phospholipid (12%) from the interface than α1-Pth. Correlating the protein properties and lipid binding activity suggests that hydrophobicity plays a key role in the membrane lipid removal activity of thionins.
Resumo:
Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.
Selected wheat seed defense proteins exhibit competitive binding to model microbial lipid interfaces
Resumo:
Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. We have examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers, using a combination of surface pressure measurements, external reflection FTIR spectroscopy and neutron reflectometry. Results highlighted differences in the protein binding mechanisms, and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.
Resumo:
The self-assembly of three cosmetically active peptide amphiphiles C16-GHK, C16-KT, and C16-KTTKS (C16 denotes a hexadecyl, palmitoyl chain) used in commercial skin care products is examined. A range of spectroscopic, microscopic, and X-ray scattering methods is used to probe the secondary structure, aggregate morphology, and the nanostructure. Peptide amphiphile (PA) C16-KTTKS forms flat tapes and extended fibrillar structures with high β-sheet content. In contrast, C16-KT and C16-GHK exhibit crystal-like aggregates with, in the case of the latter PA, lower β-sheet content. All three PA samples show spacings from bilayer structures in small-angle X-ray scattering profiles, and all three have similar critical aggregation concentrations, this being governed by the lipid chain length. However, only C16-KTTKS is stained by Congo red, a diagnostic dye used to detect amyloid formation, and this PA also shows a highly aligned cross-β X-ray diffraction pattern consistent with the high β-sheet content in the self-assembled aggregates. These findings may provide important insights relevant to the role of self-assembled aggregates on the reported collagen-stimulating properties of these PAs.
Resumo:
This review discusses the stabilization of gold nanoparticles (AuNPs) by nonionic, anionic, cationic and amphoteric polymers. The protocols used for synthesis of AuNPs in aqueous and organic solvents are described. Size, shape and morphology of AuNPs are characterized by various physicochemical methods. Application aspects of polymer-protected AuNPs in catalysis are outlined.
Resumo:
The need to source live human tissues for research and clinical applications has been a major driving force for the development of new biomaterials. Ideally, these should elicit the formation of scaffold-free tissues with native-like structure and composition. In this study, we describe a biologically interactive coating that combines the fabrication and subsequent self-release of live purposeful tissues using template–cell–environment feedback. This smart coating was formed from a self-assembling peptide amphiphile comprising a proteasecleavable sequence contiguous with a cell attachment and signaling motif. This multifunctional material was subsequently used not only to instruct human corneal or skin fibroblasts to adhere and deposit discreet multiple layers of native extracellular matrix but also to govern their own self-directed release from the template solely through the action of endogenous metalloproteases. Tissues recovered through this physiologically relevant process were carrier-free and structurally and phenotypically equivalent to their natural counterparts. This technology contributes to a new paradigm in regenerative medicine, whereby materials are able to actively direct and respond to cell behavior. The novel application of such materials as a coating capable of directing the formation and detachment of complex tissues solely under physiological conditions can have broad use for fundamental research and in future cell and tissue therapies.
Resumo:
Following previous studies, the aim of this work is to further investigate the application of colloidal gas aphrons (CGA) to the recovery of polyphenols from a grape marc ethanolic extract with particular focus on exploring the use of a non-ionic food grade surfactant (Tween 20) as an alternative to the more toxic cationic surfactant CTAB. Different batch separation trials in a flotation column were carried out to evaluate the influence of surfactant type and concentration and processing parameters (such as pH, drainage time, CGA/extract volumetric and molar ratio) on the recovery of total and specific phenolic compounds. The possibility of achieving selective separation and concentration of different classes of phenolic compounds and non-phenolic compounds was also assessed, together with the influence of the process on the antioxidant capacity of the recovered compounds. The process led to good recovery, limited loss of antioxidant capacity, but low selectivity under the tested conditions. Results showed the possibility of using Tween 20 with a separation mechanism mainly driven by hydrophobic interactions. Volumetric ratio rather than the molar ratio was the key operating parameter in the recovery of polyphenols by CGA.
Resumo:
There is a worldwide interest in the development of processes for producing colorants from natural sources. Microorganisms provide an alternative source of natural colorants produced by cultivation technology and extracted from the fermented broth. The aim of the present work was to study the recovery of red colorants from the fermented broth of Talaromyces amestolkiae using the technique of colloidal gas aphrons (CGA) comprising surfactant-stabilized microbubbles. Preliminary experiments were performed to evaluate the red colorants’ solubility in different organic solvents, octanol/water partitioning, and their stability in surfactant solutions, namely hexadecyl trimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyoxyethylenesorbitan monolaurate (Tween 20), which are cationic, anionic and nonionic surfactants, respectively. The first recovery experiments were carried out using CGA generated by these surfactants at different volumetric ratios (VR, 3–18). Subsequently, two different approaches to generate CGA were investigated at VR values of 6 and 12: the first involved the use of CTAB at pH 6.9–10.0, and the second involved the use of Tween 20 using red colorants partially dissolved in ethanol and Tween 20. The characterization results showed that red colorants have a hydrophilic nature. The highest recoveries were obtained with Tween 20 (78%) and CTAB (70%). These results demonstrated that the recovery of the colorants was driven by both electrostatic and hydrophobic interactions. The VR was found to be an important operating parameter and at VR 12 with CTAB (at pH 9) maximum recovery, partitioning coefficient (K = 5.39) and selectivity in relation to protein and sugar (SP = 3.75 and SS = 7.20 respectively) were achieved. Furthermore, with Tween 20, the separation was driven mainly by hydrophobic interactions. Overall CGA show promise for the recovery of red colorants from a fermented broth. Although better results were obtained with CTAB than with Tween 20 the latter may be more suitable for some application due to its lower toxicity.