63 resultados para Bottom-up learning


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude—from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers—as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well-known that social insects such as ants show interesting collective behaviors. How do they organize such behaviors? To expand understanding of collective behaviors of social insects, we focused on ants, Diacamma, and analyzed the behavior of a few individuals. In an experimental set-up, ants are placed in hemisphere without a nest and food and the trajectory of ants is recorded. From this bottom-up approach, we found following characteristics: 1. Activity of individuals increases and decreases periodically. 2. Spontaneous meeting process is observed between two ants and meeting spot of two ants is localized in the experimental field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thiol-bearing microgels have been synthesised from copolymerisation of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate, and subsequent deprotection using sodium thiomethoxide. The concentration of thiol groups on these microgels could be tailored by use of different molar ratios of the two monomers. These thiol-bearing microgels were shown to adhere to ex vivo porcine urinary bladder, which was correlated with their level of thiolation. By simply mixing solutions of thiol-bearing microgels and doxorubicin, high levels of drug loading into the microgels could be achieved. Thiol-bearing microgels controlled the release of doxorubicin in a time-dependent manner over several hours. These doxorubicin-loaded thiol-bearing microgels could have application in the treatment of early-stage bladder cancers. The method used represents a new ‘bottom-up’ approach for the synthesis of novel mucoadhesive microgels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk polycrystalline samples in the series Ti1−xNbxS2 (0 ≤ x ≤ 0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50 nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x = 0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8 W/mK at 700 K. This enables the figure of merit to reach ZT = 0.3 at 700 K for x = 0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging due to reinforcing feedbacks between multiple drivers. We conducted semi-structured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision-making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. All scenarios showed increased wildfire risk in the event of more droughts. The ‘Hands-off’ scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production. The ‘Fire management’ scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared to the ‘Fire suppression’ scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a ‘boundary object’ to facilitate collaboration and integration of different forms of knowledge and perceptions of fire in the region. This approach has also the potential to support decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article reports on the findings of an investigation into the attitudes of English students aged 16 to 19 years towards French and how they view the reasons behind their level of achievement. Those students who attributed success to effort, high ability, and effective learning strategies had higher levels of achievement, and students intending to continue French after age 16 were more likely than noncontinuers to attribute success to these factors. Low ability and task difficulty were the main reasons cited for lack of achievement in French, whereas the possible role of learning strategies tended to be overlooked by students. It is argued that learners' self-concept and motivation might be enhanced through approaches that encourage learners to explore the causal links between the strategies they employ and their academic performance, thereby changing the attributions they make for success or failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-Organizing Map (SOM) algorithm has been extensively used for analysis and classification problems. For this kind of problems, datasets become more and more large and it is necessary to speed up the SOM learning. In this paper we present an application of the Simulated Annealing (SA) procedure to the SOM learning algorithm. The goal of the algorithm is to obtain fast learning and better performance in terms of matching of input data and regularity of the obtained map. An advantage of the proposed technique is that it preserves the simplicity of the basic algorithm. Several tests, carried out on different large datasets, demonstrate the effectiveness of the proposed algorithm in comparison with the original SOM and with some of its modification introduced to speed-up the learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Students may have difficulty in understanding some of the complex concepts which they have been taught in the general areas of science and engineering. Whilst practical work such as a laboratory based examination of the performance of structures has an important role in knowledge construction this does have some limitations. Blended learning supports different learning styles, hence further benefits knowledge building. This research involves an empirical study of how vodcasts (video-podcasts) can be used to enrich learning experience in the structural properties of materials laboratory of an undergraduate course. Students were given the opportunity of downloading and viewing the vodcasts on the theory before and after the experimental work. It is the choice of the students when (before or after, before and after) and how many times they would like to view the vodcasts. In blended learning, the combination of face-to-face teaching, vodcasts, printed materials, practical experiments, writing reports and instructors’ feedbacks benefits different learning styles of the learners. For the preparation of the practical, the students were informed about the availability of the vodcasts prior to the practical session. After the practical work, students submitted an individual laboratory report for the assessment of the structures laboratory. The data collection consisted of a questionnaire completed by the students, follow-up semi-structured interviews and the practical reports submitted by them for assessment. The results from the questionnaire were analysed quantitatively, whilst the data from the assessment reports were analysed qualitatively. The analysis shows that most of the students who have not fully grasped the theory after the practical, managed to gain the required knowledge by viewing the vodcasts. According to their feedbacks, the students felt that they have control over how to use the material and to view it as many times as they wish. Some students who have understood the theory may choose to view it once or not at all. Their understanding was demonstrated by their explanations in their reports, and was illustrated by the approach they took to explicate the results of their experimental work. The research findings are valuable to instructors who design, develop and deliver different types of blended learning, and are beneficial to learners who try different blended approaches. Recommendations were made on the role of the innovative application of vodcasts in the knowledge construction for structures laboratory and to guide future work in this area of research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information is provided on phosphorus in the River Kennet and the adjacent Kennet and Avon Canal in southern England to assess their interactions and the changes following phosphorus reductions in sewage treatment work (STW) effluent inputs. A step reduction in soluble reactive phosphorus (SRP) concentration within the effluent (5 to 13 fold) was observed from several STWs discharging to the river in the mid-2000s. This translated to over halving of SRP concentrations within the lower Kennet. Lower Kennet SRP concentrations change from being highest under base-flow to highest under storm-flow conditions. This represented a major shift from direct effluent inputs to a within-catchment source dominated system characteristic of the upper part to the catchment. Average SRP concentrations in the lower Kennet reduced over time towards the target for good water quality. Critically, there was no corresponding reduction in chlorophyll-a concentration, the waters remaining eutrophic when set against standards for lakes. Following the up gradient input of the main water and SRP source (Wilton Water), SRP concentrations in the canal reduced down gradient to below detection limits at times near its junction with the Kennet downstream. However, chlorophyll concentrations in the canal were in an order of magnitude higher than in the river. This probably resulted from long water residence times and higher temperatures promoting progressive algal and suspended sediment generations that consumed SRP. The canal acted as a point source for sediment, algae and total phosphorus to the river especially during the summer months when boat traffic disturbed the canal's bottom sediments and the locks were being regularly opened. The short-term dynamics of this transfer was complex. For the canal and the supply source at Wilton Water, conditions remained hypertrophic when set against standards for lakes even when SRP concentrations were extremely low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for multidimensional input datasets. In this paper, we present an application of the simulated annealing procedure to the SOM learning algorithm with the aim to obtain a fast learning and better performances in terms of quantization error. The proposed learning algorithm is called Fast Learning Self-Organized Map, and it does not affect the easiness of the basic learning algorithm of the standard SOM. The proposed learning algorithm also improves the quality of resulting maps by providing better clustering quality and topology preservation of input multi-dimensional data. Several experiments are used to compare the proposed approach with the original algorithm and some of its modification and speed-up techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Top Down Induction of Decision Trees (TDIDT) is the most commonly used method of constructing a model from a dataset in the form of classification rules to classify previously unseen data. Alternative algorithms have been developed such as the Prism algorithm. Prism constructs modular rules which produce qualitatively better rules than rules induced by TDIDT. However, along with the increasing size of databases, many existing rule learning algorithms have proved to be computational expensive on large datasets. To tackle the problem of scalability, parallel classification rule induction algorithms have been introduced. As TDIDT is the most popular classifier, even though there are strongly competitive alternative algorithms, most parallel approaches to inducing classification rules are based on TDIDT. In this paper we describe work on a distributed classifier that induces classification rules in a parallel manner based on Prism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Market liberalization in emerging-market economies and the entry of multinational firms spur significant changes to the industry/institutional environment faced by domestic firms. Prior studies have described how such changes tend to be disruptive to the relatively backward domestic firms, and negatively affect their performance and survival prospects. In this paper, we study how domestic supplier firms may adapt and continue to perform, as market liberalization progresses, through catch-up strategies aimed at integrating with the industry's global value chain. Drawing on internalization theory and the literatures on upgrading and catch-up processes, learning and relational networks, we hypothesize that, for continued performance, domestic supplier firms need to adapt their strategies from catching up initially through technology licensing/collaborations and joint ventures with multinational enterprises (MNEs) to also developing strong customer relationships with downstream firms (especially MNEs). Further, we propose that successful catch-up through these two strategies lays the foundation for a strategy of knowledge creation during the integration of domestic industry with the global value chain. Our analysis of data from the auto components industry in India during the period 1992–2002, that is, the decade since liberalization began in 1991, offers support for our hypotheses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extended 'littleBits' electronic components by attaching them to a larger base that was designed to help make them easier to pick up and handle, and easier to assemble into circuits for people with learning disabilities. A pilot study with a group of students with learning disabilities was very positive. There were fewer difficulties in assembling the components into circuits, and problems such as attempting to connect them the wrong way round or the wrong way up were eliminated completely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UK new-build housing sector is facing dual pressures to expand supply, whilst delivering against tougher planning and Building Regulation requirements; predominantly in the areas of sustainability. The sector is currently responding by significantly scaling up production and incorporating new technical solutions into new homes. This trajectory of up-scaling and technical innovation has been of research interest; but this research has primarily focus on the ‘upstream’ implications for house builders’ business models and standardised design templates. There has been little attention, though, to the potential ‘downstream’ implications of the ramping up of supply and the introduction of new technologies for build quality and defects. This paper contributes to our understanding of the ‘downstream’ implications through a synthesis of the current UK defect literature with respect to new-build housing. It is found that the prevailing emphasis in the literature is limited to the responsibility, pathology and statistical analysis of defects (and failures). The literature does not extend to how house builders individually and collectively, in practice, collect and learn from defects information. The paper concludes by describing an ongoing collaborative research programme with the National House Building Council (NHBC) to: (a) understand house builders’ localised defects analysis procedures, and their current knowledge feedback loops to inform risk management strategies; and, (b) building on this understanding, design and test action research interventions to develop new data capture, learning processes and systems to reduce targeted defects.