88 resultados para Bitcoin, IoT, Raspberry Pi, Vending machine, Distributore intelligente


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we provide an initial insight into the study of MI and what it means for a machine to be intelligent. We discuss how MI has progressed to date and consider future scenarios in a realistic and logical way as much as possible. To do this, we unravel one of the major stumbling blocks to the study of MI, which is the field that has become widely known as "artificial intelligence"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A look is taken here at how the use of implant technology is rapidly diminishing the effects of certain neural illnesses and distinctly increasing the range of abilities of those affected. An indication is given of a number of problem areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. In order to assess the possible opportunities, both human and animal studies are reported on. The main thrust of the paper is, however, a discussion of neural implant experimentation linking the human nervous system bi-directionally with the internet. With this in place, neural signals were transmitted to various technological devices to directly control them, in some cases via the internet, and feedback to the brain was obtained from, for example, the fingertips of a robot hand, and ultrasonic (extra) sensory input and neural signals directly from another human's nervous system. Consideration is given to the prospects for neural implant technology in the future, both in the short term as a therapeutic device and in the long term as a form of enhancement, including the realistic potential for thought communication-potentially opening up commercial opportunities. Clearly though, an individual whose brain is part human-part machine can have abilities that far surpass those with a human brain alone. Will such an individual exhibit different moral and ethical values from those of a human? If so, what effects might this have on society? (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of polymers with stimuli responsive physical properties is a rapidly expanding area of research. At the forefront of the field are self-healing polymers, which, when fractured can regain the mechanical properties of the material either autonomically, or in response to a stimulus. It has long been known that it is possible to promote healing in conventional thermoplastics by heating the fracture zone above the Tg of the polymer under pressure. This process requires reptation and subsequent re-entanglement of macromolecules across the fracture void, which serves to bridge, and ‘heal’ the crack. The timescale for this mechanism is highly dependent on the molecular weight of the polymer being studied. This process is in contrast to that required to affect healing in supramolecular polymers such as the plasticised, hydrogen bonded elastomer reported by Leibler et al. The disparity in bond energies between the non-covalent and covalent bonds within supramolecular polymers results in fractures propagating through scission of the comparatively weak supramolecular interactions, rather than through breaking the stronger, covalent bonds. Thus, during the healing process the macromolecules surrounding the fracture site only need sufficient energy to re-engage their supramolecular interactions in order to regenerate the strength of the pristine material. Herein we describe the design, synthesis and optimization of a new class of supramolecular polymer blends that harness the reversible nature of pi-pi stacking and hydrogen bonding interactions to produce self-supporting films with facile healable characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic pi-pi stacking between the pi-electron-deficient diimide groups and the pi-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the pi-pi stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analysis of three major contests for machine intelligence. We conclude that a new era for Turing’s test requires a fillip in the guise of a committed sponsor, not unlike DARPA, funders of the successful 2007 Urban Challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, are carried out to obtain rate constants for its bimolecular reaction with ethene, C2H4, in the gas-phase. The reaction is studied over the pressure range 0.13-13.3 kPa (with added SF6) at five temperatures in the range 296-562 K. The second order rate constants, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1))=(-10.55 +/- 0.10) + (3.86 +/- 0.70) kJ mol(-1)/RT ln10. The Arrhenius parameters correspond to a loose transition state and the rate constant at room temperature is 43% of that for SiH2 + C2H4, showing that the deactivating effect of Cl-for-H substitution in the silylene is not large. Quantum chemical calculations of the potential energy surface for this reaction at the G3MP2//B3LYP level show that, as well as 1-chlorosilirane, ethylchlorosilylene is a viable product. The calculations reveal how the added effect of the Cl atom on the divalent state stabilisation of ClSiH influences the course of this reaction. RRKM calculations of the reaction pressure dependence suggest that ethylchlorosilylene should be the main product. The results are compared and contrasted with those of SiH2 and SiCl2 with C2H4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an application study into the use of a bi-directional link with the human nervous system by means of an implant, positioned through neurosurgery. Various applications are described including the interaction of neural signals with an articulated hand, a group of cooperative autonomous robots and to control the movement of a mobile platform. The microelectrode array implant itself is described in detail. Consideration is given to a wider range of possible robot mechanisms, which could interact with the human nervous system through the same technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the perspex machine which unifies projective geometry and the Turing machine, resulting in a supra-Turing machine. Specifically, we show that a Universal Register Machine (URM) can be implemented as a conditional series of whole numbered projective transformations. This leads naturally to a suggestion that it might be possible to construct a perspex machine as a series of pin-holes and stops. A rough calculation shows that an ultraviolet perspex machine might operate up to the petahertz range of operations per second. Surprisingly, we find that perspex space is irreversible in time, which might make it a candidate for an anisotropic spacetime geometry in physical theories. We make a bold hypothesis that the apparent irreversibility of physical time is due to the random nature of quantum events, but suggest that a sum over histories might be achieved by sampling fluctuations in the direction of time flow. We propose an experiment, based on the Casimir apparatus, that should measure fluctuations of time flow with respect to time duration- if such fluctuations exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Perspex Machine arose from the unification of computation with geometry. We now report significant redevelopment of both a partial C compiler that generates perspex programs and of a Graphical User Interface (GUI). The compiler is constructed with standard compiler-generator tools and produces both an explicit parse tree for C and an Abstract Syntax Tree (AST) that is better suited to code generation. The GUI uses a hash table and a simpler software architecture to achieve an order of magnitude speed up in processing and, consequently, an order of magnitude increase in the number of perspexes that can be manipulated in real time (now 6,000). Two perspex-machine simulators are provided, one using trans-floating-point arithmetic and the other using transrational arithmetic. All of the software described here is available on the world wide web. The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper to return control to the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby greatly increasing the efficiency of perspex programs as measured by the number of neurons required to implement an algorithm. The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a myelin sheath in a biological neuron. Both the perspex jumper-sheath and the biological myelin-sheath share the computational function of preventing cross-over of signals to neurons that lie close to an axon. This is an example of convergence driven by similar geometrical and computational constraints in perspex and biological neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As healthcare costs rise and an aging population makes an increased demand on services, so new techniques must be introduced to promote an individuals independence and provide these services. Robots can now be designed so they can alter their dynamic properties changing from stiff to flaccid, or from giving no resistance to movement, to damping any large and sudden movements. This has some strong implications in health care in particular for rehabilitation where a robot must work in conjunction with an individual, and might guiding or assist a persons arm movements, or might be commanded to perform some set of autonomous actions. This paper presents the state-of-the-art of rehabilitation robots with examples from prosthetics, aids for daily living and physiotherapy. In all these situations there is the potential for the interaction to be non-passive with a resulting potential for the human/machine/environment combination to become unstable. To understand this instability we must develop better models of the human motor system and fit these models with realistic parameters. This paper concludes with a discussion of this problem and overviews some human models that can be used to facilitate the design of the human/machine interfaces.