108 resultados para Bias-adjusted AR estimators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new blind equalisation algorithm for the pulse amplitude modulation (PAM) data transmitted through nonminimum phase (NMP) channels. The algorithm itself is based on a noncausal AR model of communication channels and the second- and fourth-order cumulants of the received data series, where only the diagonal slices of cumulants are used. The AR parameters are adjusted at each sample by using a successive over-relaxation (SOR) scheme, a variety of the ordinary LMS scheme, but with a faster convergence rate and a greater robustness to the selection of the ‘step-size’ in iterations. Computer simulations are implemented for both linear time-invariant (LTI) and linear time-variant (LTV) NMP channels, and the results show that the algorithm proposed in this paper has a fast convergence rate and a potential capability to track the LTV NMP channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concerns about potentially misleading reporting of pharmaceutical industry research have surfaced many times. The potential for duality (and thereby conflict) of interest is only too clear when you consider the sums of money required for the discovery, development and commercialization of new medicines. As the ability of major, mid-size and small pharmaceutical companies to innovate has waned, as evidenced by the seemingly relentless decline in the numbers of new medicines approved by Food and Drug Administration and European Medicines Agency year-on-year, not only has the cost per new approved medicine risen: so too has the public and media concern about the extent to which the pharmaceutical industry is open and honest about the efficacy, safety and quality of the drugs we manufacture and sell. In 2005 an Editorial in Journal of the American Medical Association made clear that, so great was their concern about misleading reporting of industry-sponsored studies, henceforth no article would be published that was not also guaranteed by independent statistical analysis. We examine the precursors to this Editorial, as well as its immediate and lasting effects for statisticians, for the manner in which statistical analysis is carried out, and for the industry more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measured process data normally contain inaccuracies because the measurements are obtained using imperfect instruments. As well as random errors one can expect systematic bias caused by miscalibrated instruments or outliers caused by process peaks such as sudden power fluctuations. Data reconciliation is the adjustment of a set of process data based on a model of the process so that the derived estimates conform to natural laws. In this paper, techniques for the detection and identification of both systematic bias and outliers in dynamic process data are presented. A novel technique for the detection and identification of systematic bias is formulated and presented. The problem of detection, identification and elimination of outliers is also treated using a modified version of a previously available clustering technique. These techniques are also combined to provide a global dynamic data reconciliation (DDR) strategy. The algorithms presented are tested in isolation and in combination using dynamic simulations of two continuous stirred tank reactors (CSTR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate estimates for the fall speed of natural hydrometeors are vital if their evolution in clouds is to be understood quantitatively. In this study, laboratory measurements of the terminal velocity vt for a variety of ice particle models settling in viscous fluids, along with wind-tunnel and field measurements of ice particles settling in air, have been analyzed and compared to common methods of computing vt from the literature. It is observed that while these methods work well for a number of particle types, they fail for particles with open geometries, specifically those particles for which the area ratio Ar is small (Ar is defined as the area of the particle projected normal to the flow divided by the area of a circumscribing disc). In particular, the fall speeds of stellar and dendritic crystals, needles, open bullet rosettes, and low-density aggregates are all overestimated. These particle types are important in many cloud types: aggregates in particular often dominate snow precipitation at the ground and vertically pointing Doppler radar measurements. Based on the laboratory data, a simple modification to previous computational methods is proposed, based on the area ratio. This new method collapses the available drag data onto an approximately universal curve, and the resulting errors in the computed fall speeds relative to the tank data are less than 25% in all cases. Comparison with the (much more scattered) measurements of ice particles falling in air show strong support for this new method, with the area ratio bias apparently eliminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite data are used to quantify and examine the bias in the outgoing long-wave (LW) radiation over North Africa during May–July simulated by a range of climate models and the Met Office global numerical weather prediction (NWP) model. Simulations from an ensemble-mean of multiple climate models overestimate outgoing clear-sky long-wave radiation (LWc) by more than 20 W m−2 relative to observations from Clouds and the Earth's Radiant Energy System (CERES) for May–July 2000 over parts of the west Sahara, and by 9 W m−2 for the North Africa region (20°W–30°E, 10–40°N). Experiments with the atmosphere-only version of the High-resolution Hadley Centre Global Environment Model (HiGEM), suggest that including mineral dust radiative effects removes this bias. Furthermore, only by reducing surface temperature and emissivity by unrealistic amounts is it possible to explain the magnitude of the bias. Comparing simulations from the Met Office NWP model with satellite observations from Geostationary Earth Radiation Budget (GERB) instruments suggests that the model overestimates the LW by 20–40 W m−2 during North African summer. The bias declines over the period 2003–2008, although this is likely to relate to improvements in the model and inhomogeneity in the satellite time series. The bias in LWc coincides with high aerosol dust loading estimated from the Ozone Monitoring Instrument (OMI), including during the GERBILS field campaign (18–28 June 2007) where model overestimates in LWc greater than 20 W m−2 and OMI-estimated aerosol optical depth (AOD) greater than 0.8 are concurrent around 20°N, 0–20°W. A model-minus-GERB LW bias of around 30 W m−2 coincides with high AOD during the period 18–21 June 2007, although differences in cloud cover also impact the model–GERB differences. Copyright © Royal Meteorological Society and Crown Copyright, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “case for real estate” in the mixed-asset portfolio is a topic of continuing interest to practitioners and academics. The argument is typically made by comparing efficient frontiers of portfolio with real estate to those that exclude real estate. However, most investors will have held inefficient portfolios. Thus, when analysing the real estate’s place in the mixed-asset portfolio it seems illogical to do so by comparing the difference in risk-adjusted performance between efficient portfolios, which few if any investor would have held. The approach adopted here, therefore, is to compare the risk-adjusted performance of a number of mixed-asset portfolios without real estate (which may or not be efficient) with a very large number of mixed-asset portfolios that include real estate (which again may or may not be efficient), to see the proportion of the time when there is an increase in risk-adjusted performance, significant or otherwise using appraisal-based and de-smoothed annual data from 1952-2003. So to the question how often does the addition of private real estate lead to increases the risk-adjusted performance compared with mixed-asset portfolios without real estate the answer is almost all the time. However, significant increases are harder to find. Additionally, a significant increase in risk-adjusted performance can come from either reductions in portfolio risk or increases in return depending on the investors’ initial portfolio structure. In other words, simply adding real estate to a mixed-asset portfolio is not enough to ensure significant increases in performance as the results are dependent on the percentage added and the proper reallocation of the initial portfolio mix in the expanded portfolio.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Biases in the interpretation of ambiguous material are central to cognitive models of anxiety; however, understanding of the association between interpretation and anxiety in childhood is limited. To address this, a prospective investigation of the stability and specificity of anxious cognitions and anxiety and the relationship between these factors was conducted. Method: Sixty-five children (10–11 years) from a community sample completed measures of self-reported anxiety, depression, and conduct problems, and responded to ambiguous stories at three time points over one-year. Results: Individual differences in biases in interpretation of ambiguity (specifically “anticipated distress” and “threat interpretation”) were stable over time. Furthermore, anticipated distress and threat interpretation were specifically associated with anxiety symptoms. Distress anticipation predicted change in anxiety symptoms over time. In contrast, anxiety scores predicted change in threat interpretation over time. Conclusions: The results suggest that different cognitive constructs may show different longitudinal links with anxiety. These preliminary findings extend research and theory on anxious cognitions and their link with anxiety in children, and suggest that these cognitive processes may be valuable targets for assessment and intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of gases on microporous carbons is still poorly understood, partly because the structure of these carbons is not well known. Here, a model of microporous carbons based on fullerene- like fragments is used as the basis for a theoretical study of Ar adsorption on carbon. First, a simulation box was constructed, containing a plausible arrangement of carbon fragments. Next, using a new Monte Carlo simulation algorithm, two types of carbon fragments were gradually placed into the initial structure to increase its microporosity. Thirty six different microporous carbon structures were generated in this way. Using the method proposed recently by Bhattacharya and Gubbins ( BG), the micropore size distributions of the obtained carbon models and the average micropore diameters were calculated. For ten chosen structures, Ar adsorption isotherms ( 87 K) were simulated via the hyper- parallel tempering Monte Carlo simulation method. The isotherms obtained in this way were described by widely applied methods of microporous carbon characterisation, i. e. Nguyen and Do, Horvath - Kawazoe, high- resolution alpha(a)s plots, adsorption potential distributions and the Dubinin - Astakhov ( DA) equation. From simulated isotherms described by the DA equation, the average micropore diameters were calculated using empirical relationships proposed by different authors and they were compared with those from the BG method.