67 resultados para Automobiles by Make, Model, Year.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the role of judgement in the formation of forecasts in commercial property markets. The investigation is based on interview surveys with the majority of UK forecast producers, who are using a range of inputs and data sets to form models to predict an array of variables for a range of locations. The findings suggest that forecasts need to be acceptable to their users (and purchasers) and consequently forecasters generally have incentives to avoid presenting contentious or conspicuous forecasts. Where extreme forecasts are generated by a model, forecasters often engage in ‘self‐censorship’ or are ‘censored’ following in‐house consultation. It is concluded that the forecasting process is significantly more complex than merely carrying out econometric modelling, forecasts are mediated and contested within organisations and that impacts can vary considerably across different organizational contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the role of judgement in the formation of forecasts in commercial real estate markets. Based on interview surveys with the majority of forecast producers, we find that real estate forecasters are using a range of inputs and data sets to form models to predict an array of variables for a range of locations. The findings suggest that forecasts need to be acceptable to their users (and purchasers) and consequently forecasters generally have incentives to avoid presenting contentious or conspicuous forecasts. Where extreme forecasts are generated by a model, forecasters often engage in ‘self-censorship’ or are ‘censored’ following in-house consultation. It is concluded that the forecasting process is more complex than merely carrying out econometric modelling and that the impact of the influences within this process vary considerably across different organizational contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For thousands of years, humans have inhabited locations that are highly vulnerable to the impacts of climate change, earthquakes, and floods. In order to investigate the extent to which Holocene environmental changes may have impacted on cultural evolution, we present new geologic, geomorphic, and chronologic data from the Qazvin Plain in northwest Iran that provides a backdrop of natural environmental changes for the simultaneous cultural dynamics observed on the Central Iranian Plateau. Well-resolved archaeological data from the neighbouring settlements of Zagheh (7170—6300 yr BP), Ghabristan (6215—4950 yr BP) and Sagzabad (4050—2350 yr BP) indicate that Holocene occupation of the Hajiarab alluvial fan was interrupted by a 900 year settlement hiatus. Multiproxy climate data from nearby lakes in northwest Iran suggest a transition from arid early-Holocene conditions to more humid middle-Holocene conditions from c. 7550 to 6750 yr BP, coinciding with the settlement of Zagheh, and a peak in aridity at c. 4550 yr BP during the settlement hiatus. Palaeoseismic investigations indicate that large active fault systems in close proximity to the tell sites incurred a series of large (MW ~7.1) earthquakes with return periods of ~500—1000 years during human occupation of the tells. Mapping and optically stimulated luminescence (OSL) chronology of the alluvial sequences reveals changes in depositional style from coarse-grained unconfined sheet flow deposits to proximal channel flow and distally prograding alluvial deposits sometime after c. 8830 yr BP, possibly reflecting an increase in moisture following the early-Holocene arid phase. The coincidence of major climate changes, earthquake activity, and varying sedimentation styles with changing patterns of human occupation on the Hajiarab fan indicate links between environmental and anthropogenic systems. However, temporal coincidence does not necessitate a fundamental causative dependency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rensch’s rule, which states that the magnitude of sexual size dimorphism tends to increase with increasing body size, has evolved independently in three lineages of large herbivorous mammals: bovids (antelopes), cervids (deer), and macropodids (kangaroos). This pattern can be explained by a model that combines allometry,life-history theory, and energetics. The key features are thatfemale group size increases with increasing body size and that males have evolved under sexual selection to grow large enough to control these groups of females. The model predicts relationships among body size and female group size, male and female age at first breeding,death and growth rates, and energy allocation of males to produce body mass and weapons. Model predictions are well supported by data for these megaherbivores. The model suggests hypotheses for why some other sexually dimorphic taxa, such as primates and pinnipeds(seals and sea lions), do or do not conform to Rensh’s rule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A system for continuous data assimilation described recently (Bengtsson & Gustavsson, 1971) has been further developed and tested under more realistic conditions. A balanced barotropic model is used and the integration is performed over an octagon covering the area to the north of 20° N. Comparisons have been made between using data from the actual aerological network and data from a satellite in a polar orbit. The result of the analyses has been studied in different subregions situated in data sparse as well as in data dense areas. The errors of the analysis have also been studied in the wave spectrum domain. Updating is performed using data generated by the model but also by model-independent data. Rather great differences are obtained between the two experiments especially with respect to the ultra-long waves. The more realistic approach gives much larger analysis error. In general the satellite updating yields somewhat better result than the updating from the conventional aerological network especially in the data sparse areas over the oceans. Most of the experiments are performed by a satellite making 200 observations/track, a sidescan capability of 40° and with a RMS-error of 20 m. It is found that the effect of increasing the number of satellite observations from 100 to 200 per orbit is almost negligible. Similarly the effect is small of improving the observations by diminishing the RMS-error below a certain value. An observing system using two satellites 90° out of phase has also been investigated. This is found to imply a substantial improvement. Finally an experiment has been performed using actual SIRS-soundings from NIMBUS IV. With respect to the very small number of soundings at 500 mb, 142 during 48 hours, the result can be regarded as quite satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The currently available model-based global data sets of atmospheric circulation are a by-product of the daily requirement of producing initial conditions for numerical weather prediction (NWP) models. These data sets have been quite useful for studying fundamental dynamical and physical processes, and for describing the nature of the general circulation of the atmosphere. However, due to limitations in the early data assimilation systems and inconsistencies caused by numerous model changes, the available model-based global data sets may not be suitable for studying global climate change. A comprehensive analysis of global observations based on a four-dimensional data assimilation system with a realistic physical model should be undertaken to integrate space and in situ observations to produce internally consistent, homogeneous, multivariate data sets for the earth's climate system. The concept is equally applicable for producing data sets for the atmosphere, the oceans, and the biosphere, and such data sets will be quite useful for studying global climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1∘ × 1∘) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1∘ × 1∘ provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the frequency and intensity of cyclones and associated windstorms affecting the Medi-terranean region simulated under enhanced Greenhouse Gas forcing conditions are investigated. The analysis is based on 7 climate model integrations performed with two coupled global models (ECHAM5 MPIOM and INGV CMCC), comparing the end of the twentieth century and at least the first half of the twenty-first century. As one of the models has a considerably enhanced resolution of the atmosphere and the ocean, it is also investigated whether the climate change signals are influenced by the model resolution. While the higher resolved simulation is closer to reanalysis climatology, both in terms of cyclones and windstorm distributions, there is no evidence for an influence of the resolution on the sign of the climate change signal. All model simulations show a reduction in the total number of cyclones crossing the Mediterranean region under climate change conditions. Exceptions are Morocco and the Levant region, where the models predict an increase in the number of cyclones. The reduction is especially strong for intense cyclones in terms of their Laplacian of pressure. The influence of the simulated positive shift in the NAO Index on the cyclone decrease is restricted to the Western Mediterranean region, where it explains 10–50 % of the simulated trend, depending on the individual simulation. With respect to windstorms, decreases are simulated over most of the Mediterranean basin. This overall reduction is due to a decrease in the number of events associated with local cyclones, while the number of events associated with cyclones outside of the Mediterranean region slightly increases. These systems are, however, less intense in terms of their integrated severity over the Mediterranean area, as they mostly affect the fringes of the region. In spite of the general reduction in total numbers, several cyclones and windstorms of intensity unknown under current climate conditions are identified for the scenario simulations. For these events, no common trend exists in the individual simulations. Thus, they may rather be attributed to long-term (e.g. decadal) variability than to the Greenhouse Gas forcing. Nevertheless, the result indicates that high-impact weather systems will remain an important risk in the Mediterranean Basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a 2D-advection-diffusion model that simulates the main transport pathways influencing tracer distributions in the lowermost stratosphere (LMS). The model describes slow diabatic descent of aged stratospheric air, vertical (cross-isentropic) and horizontal (along isentropes) diffusion within the LMS and across the tropopause using equivalent latitude and potential temperature coordinates. Eddy diffusion coefficients parameterize the integral effect of dynamical processes leading to small scale turbulence and mixing. They were specified by matching model simulations to observed CO distributions. Interestingly, the model suggests mixing across isentropes to be more important than horizontal mixing across surfaces of constant equivalent latitude, shining new light on the interplay between various transport mechanisms in the LMS. The model achieves a good description of the small scale tracer features at the tropopause with squared correlation coefficients R2 = 0.72…0.94.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new radiative transfer simulations to support determination of sea surface temperature (SST) from Along Track Scanning Radiometer (ATSR) imagery. The simulations are to be used within the ATSR Reprocessing for Climate project. The simulations are based on the “Reference Forward Model” line-by-line model linked with a sea surface emissivity model that accounts for wind speed and temperature, and with a discrete ordinates scattering model (DISORT). Input to the forward model is a revised atmospheric profile dataset, based on full resolution ERA-40, with a wider range of high-latitude profiles to address known retrieval biases in those regions. Analysis of the radiative impacts of atmospheric trace gases shows that geographical and temporal variation of N2O, CH4, HNO3, and CFC-11 and CFC-12 have effects of order 0.05, 0.2, 0.1 K on the 3.7, 11, 12 μm channels respectively. In addition several trace gases, neglected in previous studies, are included using fixed profiles contributing ~ 0.04 K to top-of-atmosphere BTs. Comparison against observations for ATSR2 and AATSR indicates that forward model biases have been reduced from 0.2 to 0.5 K for previous simulations to ~ 0.1 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct radiative forcing of 65 chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroethers, halons, iodoalkanes, chloroalkanes, bromoalkanes, perfluorocarbons and nonmethane hydrocarbons has been evaluated using a consistent set of infrared absorption cross sections. For the radiative transfer models, both line-by-line and random band model approaches were employed for each gas. The line-by-line model was first validated against measurements taken by the Airborne Research Interferometer Evaluation System (ARIES) of the U.K. Meteorological Office; the computed spectrally integrated radiance of agreed to within 2% with experimental measurements. Three model atmospheres, derived from a three-dimensional climatology, were used in the radiative forcing calculations to more accurately represent hemispheric differences in water vapor, ozone concentrations, and cloud cover. Instantaneous, clear-sky radiative forcing values calculated by the line-by-line and band models were in close agreement. The band model values were subsequently modified to ensure exact agreement with the line-by-line model values. Calibrated band model radiative forcing values, for atmospheric profiles with clouds and using stratospheric adjustment, are reported and compared with previous literature values. Fourteen of the 65 molecules have forcings that differ by more than 15% from those in the World Meteorological Organization [1999] compilation. Eleven of the molecules have not been reported previously. The 65-molecule data set reported here is the most comprehensive and consistent database yet available to evaluate the relative impact of halocarbons and hydrocarbons on climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ a numerical model of cusp ion precipitation and proton aurora emission to fit variations of the peak Doppler-shifted Lyman-a intensity observed on 26 November 2000 by the SI-12 channel of the FUV instrument on the IMAGE satellite. The major features of this event appeared in response to two brief swings of the interplanetary magnetic field (IMF) toward a southward orientation. We reproduce the observed spatial distributions of this emission on newly opened field lines by combining the proton emission model with a model of the response of ionospheric convection. The simulations are based on the observed variations of the solar wind proton temperature and concentration and the interplanetary magnetic field clock angle. They also allow for the efficiency, sampling rate, integration time and spatial resolution of the FUV instrument. The good match (correlation coefficient 0.91, significant at the 98% level) between observed and modeled variations confirms the time constant (about 4 min) for the rise and decay of the proton emissions predicted by the model for southward IMF conditions. The implications for the detection of pulsed magnetopause reconnection using proton aurora are discussed for a range of interplanetary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a brightening of the Lyman-alpha emission in the cusp which occurred in response to a short-lived southward turning of the interplanetary magnetic field (IMF) during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992). We use the numerical cusp ion precipitation model of Lockwood and Davis (1996), along with modelled Lyman-_ emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-alpha intensities with oxygen emissions observed simultaneously by the SI-13 channel of the FUV instrument offers an opportunity to test whether or not the clock angle dependence is consistent with the “component” or the “anti-parallel” reconnection hypothesis.