130 resultados para Automatic Speaker Recognition


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines a method for automatic artefact removal from multichannel recordings of event-related potentials (ERPs). The proposed method is based on, firstly, separation of the ERP recordings into independent components using the method of temporal decorrelation source separation (TDSEP). Secondly, the novel lagged auto-mutual information clustering (LAMIC) algorithm is used to cluster the estimated components, together with ocular reference signals, into clusters corresponding to cerebral and non-cerebral activity. Thirdly, the components in the cluster which contains the ocular reference signals are discarded. The remaining components are then recombined to reconstruct the clean ERPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The associative sequence learning model proposes that the development of the mirror system depends on the same mechanisms of associative learning that mediate Pavlovian and instrumental conditioning. To test this model, two experiments used the reduction of automatic imitation through incompatible sensorimotor training to assess whether mirror system plasticity is sensitive to contingency (i.e., the extent to which activation of one representation predicts activation of another). In Experiment 1, residual automatic imitation was measured following incompatible training in which the action stimulus was a perfect predictor of the response (contingent) or not at all predictive of the response (noncontingent). A contingency effect was observed: There was less automatic imitation indicative of more learning in the contingent group. Experiment 2 replicated this contingency effect and showed that, as predicted by associative learning theory, it can be abolished by signaling trials in which the response occurs in the absence of an action stimulus. These findings support the view that mirror system development depends on associative learning and indicate that this learning is not purely Hebbian. If this is correct, associative learning theory could be used to explain, predict, and intervene in mirror system development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the complex formation of a peptide betaAbetaAKLVFF, previously developed by our group, with Abeta(1–42) in aqueous solution. Circular dichroism spectroscopy is used to probe the interactions between betaAbetaAKLVFF and Abeta(1–42), and to study the secondary structure of the species in solution. Thioflavin T fluorescence spectroscopy shows that the population of fibers is higher in betaAbetaAKLVFF/Abeta(1–42) mixtures compared to pure Abeta(1–42) solutions. TEM and cryo-TEM demonstrate that co-incubation of betaAbetaAKLVFF with Abeta(1–42) causes the formation of extended dense networks of branched fibrils, very different from the straight fibrils observed for Abeta(1–42) alone. Neurotoxicity assays show that although betaAbetaAKLVFF alters the fibrillization of Abeta(1–42), it does not decrease the neurotoxicity, which suggests that toxic oligomeric Abeta(1–42) species are still present in the betaAbetaAKLVFF/Abeta(1–42) mixtures. Our results show that our designed peptide binds to Abeta(1–42) and changes the amyloid fibril morphology. This is shown to not necessarily translate into reduced toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence-specific binding is demonstrated between pyrene-based tweezer molecules and soluble, high molar mass copolyimides. The binding involves complementary pi - pi stacking interactions, polymer chain-folding, and hydrogen bonding and is extremely sensitive to the steric environment around the pyromellitimide binding-site. A detailed picture of the intermolecular interactions involved has been obtained through single-crystal X-ray studies of tweezer complexes with model diimides. Ring-current magnetic shielding of polyimide protons by the pyrene '' arms '' of the tweezer molecule induces large complexation shifts of the corresponding H-1 NMR resonances, enabling specific triplet sequences to be identified by their complexation shifts. Extended comonomer sequences (triplets of triplets in which the monomer residues differ only by the presence or absence of a methyl group) can be '' read '' by a mechanism which involves multiple binding of tweezer molecules to adjacent diimide residues within the copolymer chain. The adjacent-binding model for sequence recognition has been validated by two conceptually different sets of tweezer binding experiments. One approach compares sequence-recognition events for copolyimides having either restricted or unrestricted triple-triplet sequences, and the other makes use of copolymers containing both strongly binding and completely nonbinding diimide residues. In all cases the nature and relative proportions of triple-triplet sequences predicted by the adjacent-binding model are fully consistent with the observed H-1 NMR data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of shape features for region classification and high-level recognition is introduced. The novel Randomised Region Ray (RRR) features can be used to train binary decision trees for object category classification using an abstract representation of the scene. In particular we address the problem of human detection using an over segmented input image. We therefore do not rely on pixel values for training, instead we design and train specialised classifiers on the sparse set of semantic regions which compose the image. Thanks to the abstract nature of the input, the trained classifier has the potential to be fast and applicable to extreme imagery conditions. We demonstrate and evaluate its performance in people detection using a pedestrian dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are developing computational tools supporting the detailed analysis of the dependence of neural electrophysiological response on dendritic morphology. We approach this problem by combining simulations of faithful models of neurons (experimental real life morphological data with known models of channel kinetics) with algorithmic extraction of morphological and physiological parameters and statistical analysis. In this paper, we present the novel method for an automatic recognition of spike trains in voltage traces, which eliminates the need for human intervention. This enables classification of waveforms with consistent criteria across all the analyzed traces and so it amounts to reduction of the noise in the data. This method allows for an automatic extraction of relevant physiological parameters necessary for further statistical analysis. In order to illustrate the usefulness of this procedure to analyze voltage traces, we characterized the influence of the somatic current injection level on several electrophysiological parameters in a set of modeled neurons. This application suggests that such an algorithmic processing of physiological data extracts parameters in a suitable form for further investigation of structure-activity relationship in single neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the application of weightless neural networks (WNNs) to the problem of face recognition and compares the results with those provided using a more complicated multiple neural network approach. WNNs have significant advantages over the more common forms of neural networks, in particular in term of speed of operation and learning. A major difficulty when applying neural networks to face recognition problems is the high degree of variability in expression, pose and facial details: the generalisation properties of a WNN can be crucial. In the light of this problem a software simulator of a WNN has been built and the results of some initial tests are presented and compared with other techniques