47 resultados para Automated estimator
Resumo:
Temperature, pressure, gas stoichiometry, and residence time were varied to control the yield and product distribution of the palladium-catalyzed aminocarbonylation of aromatic bromides in both a silicon microreactor and a packed-bed tubular reactor. Automation of the system set points and product sampling enabled facile and repeatable reaction analysis with minimal operator supervision. It was observed that the reaction was divided into two temperature regimes. An automated system was used to screen steady-state conditions for offline analysis by gas chromatography to fit a reaction rate model. Additionally, a transient temperature ramp method utilizing online infrared analysis was used, leading to more rapid determination of the reaction activation energy of the lower temperature regimes. The entire reaction spanning both regimes was modeled in good agreement with the experimental data.
Resumo:
A new sparse kernel density estimator with tunable kernels is introduced within a forward constrained regression framework whereby the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Based on the minimum integrated square error criterion, a recursive algorithm is developed to select significant kernels one at time, and the kernel width of the selected kernel is then tuned using the gradient descent algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing very sparse kernel density estimators with competitive accuracy to existing kernel density estimators.