68 resultados para Authoritative feeding
Resumo:
Providing supplementary food for wild birds is a globally popular past-time; almost half of the households in many developed countries participate and billions of US dollars are spent annually. Although the direct influence of this additional resource on bird survivorship and fecundity has been studied, there is little understanding of the wider ecological consequences of this massive perturbation to (what are usually) urban ecosystems. We investigated the possible effects of wild bird feeding on the size and survivorship of colonies of a widespread arthropod prey species of many small passerine birds, the pea aphid [Acyrthosiphon pisum (Harris); Hemiptera: Aphididae], in suburban gardens in a large town in southern England. We found significantly fewer aphids and shorter colony survival times in colonies exposed to avian predation compared to protected controls in gardens with a bird feeder but no such differences between exposed and protected colonies in gardens that did not feed birds. Our work therefore suggests that supplementary feeding of wild birds in gardens may indirectly influence population sizes and survivorship of their arthropod prey and highlights the need for further research into the potential effects on other species.
Resumo:
Cannabinoid type 1 receptor-mediated appetite stimulation by D9tetrahydrocannabinol (D9THC) is well understood. Recently, it has become apparent that non-D9THC phytocannabinoids could also alter feeding patterns. Here, we show definitively that non-D9THC phytocannabinoids stimulate feeding. Twelve male, Lister-Hooded rats were prefed to satiety prior to administration of a standardized cannabis extract or to either of two mixtures of pure phytocannabinoids (extract analogues) comprising the phytocannabinoids present in the same proportions as the standardized extract (one with and one without D9THC). Hourly intake and meal pattern data were recorded and analysed using two-way analysis of variance followed by one-way analysis of variance and Bonferroni post-hoc tests. Administration of both extract analogues significantly increased feeding behaviours over the period of the test. All three agents increased hour-one intake and meal-one size and decreased the latency to feed, although the zero-D9THC extract analogue did so to a lesser degree than the high-D9THC analogue. Furthermore, only the analogue containing D9THC significantly increased meal duration. The data confirm that at least one non-D9THC phytocannabinoid induces feeding pattern changes in rats, although further trials using individual phytocannabinoids are required to fully understand the observed effects.
Resumo:
Rationale: Increased food consumption following Δ9- tetrahydrocannabinol-induced cannabinoid type 1 receptor agonism is well documented. However, possible non-Δ9- tetrahydrocannabinol phytocannabinoid-induced feeding effects have yet to be fully investigated. Therefore, we have assessed the effects of the individual phytocannabinoids, cannabigerol, cannabidiol and cannabinol, upon feeding behaviors. Methods: Adult male rats were treated (p.o.) with cannabigerol, cannabidiol, cannabinol or cannabinol plus the CB1R antagonist, SR141716A. Prior to treatment, rats were satiated and food intake recorded following drug administration. Data were analyzed for hourly intake and meal microstructure. Results: Cannabinol induced a CB1R-mediated increase in appetitive behaviors via significant reductions in the latency to feed and increases in consummatory behaviors via increases in meal 1 size and duration. Cannabinol also significantly increased the intake during hour 1 and total chow consumed during the test. Conversely, cannabidiol significantly reduced total chow consumption over the test period. Cannabigerol administration induced no changes to feeding behavior. Conclusion: This is the first time cannabinol has been shown to increase feeding. Therefore, cannabinol could, in the future, provide an alternative to the currently used and psychotropic Δ9-tetrahydrocannabinol-based medicines since cannabinol is currently considered to be non-psychotropic. Furthermore, cannabidiol reduced food intake in line with some existing reports, supporting the need for further mechanistic and behavioral work examining possible anti-obesity effects of cannabidiol.
Resumo:
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.
Resumo:
The aim of this study was to compare the effects of the mixture of Lactobacillus delbrueckii subsp. rhamnosus strain GG, Bifidobacterium lactis Bb12, and inulin on intestinal populations of lactobacilli, bifidobacteria, and enterobacteria in adult and elderly rats fed the same (in quality and quantity) diet. The portal plasma levels of two neuropeptides, neuropeptide Y (NPY) and peptide YY (PYY), were also evaluated to assess the physiological consequences of the synbiotic treatment for the gastrointestinal (GI) tracts of rats of different ages. Adult (n = 24) and elderly (n = 24) male rats were fed the AIN-93 M maintenance diet. After 2 weeks of adaptation, the diet of 12 rats of each age group was supplemented with 8% inulin and with strains GG and Bb12 to provide 2.2 x 10(9) CFU of each strain g(-1) of the diet. Blood and different regions of the GI tract were sampled from all rats after 21 days of the treatment. Treatment with the mixture of strain GG, strain BB12, and inulin induced significantly different changes in the numbers of lactobacilli, bifidobacteria, and enterobacteria of the stomach, small intestine, cecum, and colon microflora. Moreover, the GG, BB12, and inulin mixture increased the concentrations of NPY and PYY for adult rats. For the elderly animals, the PYY concentration was not changed, while the NPY concentration was decreased by treatment with the GG, BB12, and inulin mixture. The results of the present study indicate that the physiological status of the GI tract, and not just diet, has a major role in the regulation of important groups of the GI bacteria community, since even the outcome of the dietary modification with synbiotics depends on the ages of the animals.
Resumo:
AIMS: The aim of this study was to evaluate the impact of the administration of microencapsulated Lactobacillus plantarum CRL 1815 with two combinations of microbially derived polysaccharides, xanthan : gellan gum (1%:0·75%) and jamilan : gellan gum (1%:1%), on the rat faecal microbiota. METHODS AND RESULTS: A 10-day feeding study was performed for each polymer combination in groups of 16 rats fed either with placebo capsules, free or encapsulated Lact. plantarum or water. The composition of the faecal microbiota was analysed by fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Degradation of placebo capsules was detected, with increased levels of polysaccharide-degrading bacteria. Xanthan : gellan gum capsules were shown to reduce the Bifidobacterium population and increase the Clostridium histolyticum group levels, but not jamilan : gellan gum capsules. Only after administration of jamilan : gellan gum-probiotic capsules was detected a significant increase in Lactobacillus-Enterococcus group levels compared to controls (capsules and probiotic) as well as two bands were identified as Lact. plantarum in two profiles of ileum samples. CONCLUSIONS: Exopolysaccharides constitute an interesting approach for colon-targeted delivery of probiotics, where jamilan : gellan gum capsules present better biocompatibility and promising results as a probiotic carrier. SIGNIFICANCE AND IMPACT OF STUDY: This study introduces and highlights the importance of biological compatibility in the encapsulating material election, as they can modulate the gut microbiota by themselves, and the use of bacterial exopolysaccharides as a powerful source of new targeted-delivery coating material.
Resumo:
Since venom is costly to produce and stinging is not obligatory in prey capture for scorpions, the need to optimize use of resources suggests that venom should be reserved for prey that cannot otherwise be overpowered, (i.e., larger and/or more active prey). In accordance with these predictions, sting use by Hadrurus spadix Stahnke 1940 increased with prey size, reaching 100% once prey items were longer than the scorpion’s pedipalp patella length, and with prey activity, which we manipulated by varying prey temperature. Surprisingly, the scorpions were slower to capture less active (cooler) prey than those that exhibited higher rates of activity. We suggest this is because prey are located by vibrations in the substrate, with less active prey producing fewer vibrations. Keywords: Optimal foraging, venom, pectines
Resumo:
In the recent past there was a widespread working assumption in many countries that problems of food production had been solved, and that food security was largely a matter of distribution and access to be achieved principally by open markets. The events of 2008 challenged these assumptions, and made public a much wider debate about the costs of current food production practices to the environment and whether these could be sustained. As in the past 50 years, it is anticipated that future increases in crop production will be achieved largely by increasing yields per unit area rather than by increasing the area of cropped land. However, as yields have increased, so the ratio of photosynthetic energy captured to energy expended in crop production has decreased. This poses a considerable challenge: how to increase yield while simultaneously reducing energy consumption (allied to greenhouse gas emissions) and utilizing resources such as water and phosphate more efficiently. Given the timeframe in which the increased production has to be realized, most of the increase will need to come from crop genotypes that are being bred now, together with known agronomic and management practices that are currently under-developed.
Resumo:
Capsule The provision of meat for garden birds is unusual in the UK but a reintroduced raptor, the Red Kite Milvus milvus, is now regularly fed in some areas. A questionnaire of garden kite feeders revealed that people were most often motivated to feed by a desire to see kites close up and that most provisioning falls within available guidelines. We estimated the median amount of food thought to be taken by kites per kite-feeding garden per day as 21 g, sufficient to support 0.12–0.26 individuals.
Supplementary feeding of wild birds indirectly affects ground beetle populations in suburban gardens
Resumo:
Supplementary feeding of wild birds by domestic garden-holders is a globally widespread and popular form of human–wildlife interaction, particularly in urban areas. Vast amounts of energy are thus being added to garden ecosystems. However, the potential indirect effects of this activity on non-avian species have been little studied to date, with the only two previous studies taking place under experimentally manipulated conditions. Here we present the first evidence of a localised depletive effect of wild bird feeding on ground beetles (Coleoptera: Carabidae) in suburban gardens under the usual feeding patterns of the garden-holders. We trapped significantly fewer ground beetles directly under bird-feeding stations than in matched areas of habitat away from feeders. Video analysis also revealed significantly higher activity by ground-foraging birds under the feeding stations than in the control areas. Small mammal trapping revealed no evidence that these species differ in abundance between gardens with and without bird feeders. We therefore suggest that local increases in ground-foraging activity by bird species whose diets encompass arthropods as well as seed material are responsible for the reduction in ground beetle numbers. Our work therefore illustrates that providing food for wild birds can have indirect negative effects on palatable prey species under typical conditions.
Resumo:
The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.
Resumo:
Across two studies, we examined the association between adiposity, restrictive feeding practices and cortical processing bias to food stimuli in children. We assessed P3b event-related potential (ERP) during visual oddball tasks in which the frequently presented stimulus was non-food and the infrequently presented stimulus was either a food (Study 1) or non-food (Study 2) item. Children responded to the infrequently presented stimulus and accuracy and speed responses were collected. Restrictive feeding practices, children's height and weight were also measured. In Study 1, the difference in P3b amplitude for infrequently presented food stimuli, relative to frequently presented non-food stimuli, was negatively associated with adiposity and positively associated with restrictive feeding practices after controlling for adiposity. There was no association between P3b amplitude difference and adiposity or restriction in Study 2, suggesting that the effects seen in Study 1 were not due to general attentional processes. Taken together, our results suggest that attentional salience, as indexed by the P3b amplitude, may be important for understanding the neural correlates of adiposity and restrictive feeding practices in children.
Resumo:
Wild bird feeding is popular in domestic gardens across the world. Nevertheless, there is surprisingly little empirical information on certain aspects of the activity and no year-round quantitative records of the amounts and nature of the different foods provided in individual gardens. We sought to characterise garden bird feeding in a large UK urban area in two ways. First, we conducted face-to-face questionnaires with a representative cross-section of residents. Just over half fed birds, the majority doing so year round and at least weekly. Second, a two-year study recorded all foodstuffs put out by households on every provisioning occasion. A median of 628 kcal/garden/day was given. Provisioning level was not significantly influenced by weather or season. Comparisons between the data sets revealed significantly less frequent feeding amongst these ‘keen’ feeders than the face-to-face questionnaire respondents, suggesting that one-off questionnaires may overestimate provisioning frequency. Assuming 100% uptake, the median provisioning level equates to sufficient supplementary resources across the UK to support 196 million individuals of a hypothetical average garden-feeding bird species (based on 10 common UK garden-feeding birds’ energy requirements). Taking the lowest provisioning level recorded (101 kcal/day) as a conservative measure, 31 million of these average individuals could theoretically be supported.