50 resultados para Atkinson
Resumo:
This chapter introduces the latest practices and technologies in the interactive interpretation of environmental data. With environmental data becoming ever larger, more diverse and more complex, there is a need for a new generation of tools that provides new capabilities over and above those of the standard workhorses of science. These new tools aid the scientist in discovering interesting new features (and also problems) in large datasets by allowing the data to be explored interactively using simple, intuitive graphical tools. In this way, new discoveries are made that are commonly missed by automated batch data processing. This chapter discusses the characteristics of environmental science data, common current practice in data analysis and the supporting tools and infrastructure. New approaches are introduced and illustrated from the points of view of both the end user and the underlying technology. We conclude by speculating as to future developments in the field and what must be achieved to fulfil this vision.
Resumo:
The search for ever deeper relationships among the World’s languages is bedeviled by the fact that most words evolve too rapidly to preserve evidence of their ancestry beyond 5,000 to 9,000 y. On the other hand, quantitative modeling indicates that some “ultraconserved” words exist that might be used to find evidence for deep linguistic relationships beyond that time barrier. Here we use a statistical model, which takes into account the frequency with which words are used in common everyday speech, to predict the existence of a set of such highly conserved words among seven language families of Eurasia postulated to form a linguistic superfamily that evolved from a common ancestor around 15,000 y ago. We derive a dated phylogenetic tree of this proposed superfamily with a time-depth of ∼14,450 y, implying that some frequently used words have been retained in related forms since the end of the last ice age. Words used more than once per 1,000 in everyday speech were 7- to 10-times more likely to show deep ancestry on this tree. Our results suggest a remarkable fidelity in the transmission of some words and give theoretical justification to the search for features of language that might be preserved across wide spans of time and geography.
Resumo:
Increasing population size and demand for food in the developing world is driving the intensification ofagriculture, often threatening the biodiversity within the farmland itself and in the surrounding land-scape. This paper quantifies bird and tree species richness, tree carbon and farmer’s gross income, andinteractions between these four variables, across an agricultural gradient in central Uganda. We showedthat higher cultivation intensities in farmed landscapes resulted in increased income but also a declinein species richness of birds and trees, and reductions in tree carbon storage. These declines were particu-larly marked with a shift from high intensity smallholder mixed cropping to plantation style agriculture.This was especially evident for birds where significant declines only occurred in plantations. Small scalefarming will likely continue to be a key source of cash income for the rural populations, and ensuring‘sustained agricultural growth’ within such systems while minimising negative impacts on biodiversityand other key ecosystem services will be a major future challenge.
Resumo:
Simultaneous all angle collocations (SAACs) of microwave humidity sounders (AMSU-B and MHS) on-board polar orbiting satellites are used to estimate scan-dependent biases. This method has distinct advantages over previous methods, such as that the estimated scan-dependent biases are not influenced by diurnal differences between the edges of the scan and the biases can be estimated for both sides of the scan. We find the results are robust in the sense that biases estimated for one satellite pair can be reproduced by double differencing biases of these satellites with a third satellite. Channel 1 of these instruments shows the least bias for all satellites. Channel 2 has biases greater than 5 K, thus needs to be corrected. Channel 3 has biases of about 2 K and more and they are time varying for some of the satellites. Channel 4 has the largest bias which is about 15 K when the data are averaged for 5 years, but biases of individual months can be as large as 30 K. Channel 5 also has large and time varying biases for two of the AMSU-Bs. NOAA-15 (N15) channels are found to be affected the most, mainly due to radio frequency interference (RFI) from onboard data transmitters. Channel 4 of N15 shows the largest and time varying biases, so data of this channel should only be used with caution for climate applications. The two MHS instruments show the best agreement for all channels. Our estimates may be used to correct for scan-dependent biases of these instruments, or at least used as a guideline for excluding channels with large scan asymmetries from scientific analyses.