98 resultados para Aroma Compounds
Resumo:
Virgin olive oil is valued for its flavor, but unacceptable off-flavors may develop on storage in food products containing this oil due to oxidation. The oxidative stability of oil-in-water emulsions containing bovine serum albumin (BSA) and virgin olive oil phenolic compounds was studied. Four oil-in-water emulsions with and without BSA and phenols isolated from virgin olive oil were prepared. These model systems were stored at 60 degrees C to speed up lipid oxidation. Primary and secondary oxidation products were monitored every three days. Peroxide values and conjugated diene contents were determined as measures of the primary oxidation products. p-Anisidine values and volatile compounds were determined as measures of the secondary oxidation products. This latter determination was carried out by headspace solid-phase microextraction coupled with gas chromatography. Although olive oil phenolic compounds and BSA contributed some antioxidant activity when present as individual additives, the combination of BSA with phenols in an emulsion showed 58-127% synergy, depending on which analytical method was used in the calculation. The emulsion containing phenolic compounds and BSA showed a low level of deterioration after 45 days of storage at 60 degrees C.
Resumo:
Headspace solid phase microextraction (HS-SPME) has been used to isolate the headspace volatiles formed during oxidation of oil-in-water emulsions. Qualitative and quantitative analyses with an internal standard were performed by GC-FID. Four sample temperatures for adsorption (30, 40, 50 and 60 C) and adsorption times in the range 10-25 min were tested to determine the conditions for the volatile concentration to reach equilibrium. The optimum conditions were at 50 C for 20 min. The method was applied to monitor changes in volatile composition during oxidation of an o/w emulsion. SPME was a simple, reproducible and sensitive method for the analysis of volatile oxidation products in oil-in-water emulsions. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.
Resumo:
A new homo-proline tetrazole derivative 7 has been prepared and shown to have improved properties for achieving asymmetric Michael addition of carbonyl compounds to nitro-olefins.
Resumo:
Selected water-soluble precursors, including sugars, free amino acids and nucleotides, were quantified in raw and cooked goat meat, as a part of a study which the main aim was to better understand the aroma formation in goat meat. When compared with the same precursors in beef, lamb and chicken, levels in goat meat were generally similar, except for fructose and glycine, which were present at higher concentrations in goat meat. Fructose, glucose, IMP, and cysteine suffered the greatest losses during the cooking process and seem to be most involved in aroma formation in goat meat. The effects of these precursor changes on the volatile compound composition and formation process of them on cooked goat meat are discussed.
The synthesis, structure, and electrochemical properties of Fe(C CC N)(dppe)Cp and related compounds
Resumo:
The cyanoacetylide complex Fe(CCCN)(dppe)Cp (3) is readily obtained from sequential reaction of Fe(CCSiMe3)(dppe)Cp with methyllithium and phenyl cyanate. Complex 3 is a good metalloligand, and coordination to the metal fragments [RhCl(CO)(2)], [Ru(PPh3)(2)Cp](+), and [Ru(dppe)Cp*](+) affords the corresponding cyanoaceylide-bridged heterobimetallic complexes. In the case of the 36-electron complexes [Cp(dppe)Fe-CCCN-MLn](n+), spectroscopic and structural data are consistent with a degree of charge transfer from the iron centre to the rhodium or ruthenium centre via the C3N bridge, giving rise to a polarized ground state. Electrochemical and spectroelectrochemical methods reveal significant interactions between the metal centres in the oxidized (35 electron) derivatives, [Cp(dppe)Fe-CCCN-MLn]((n+1)+).
Resumo:
The synthesis of a dithiol-functionalized pyrene derivative is reported, together with studies of interactions between this receptor (and other related pyrenes) and nitroaromatic compounds (NACs), in both solution and in the solid state. Spectroscopic analysis in solution and X-ray crystallographic analysis of cocrystals of pyrene and NACs in the solid state indicate that supramolecular interactions lead to the formation of defined pi-pi stacked complexes. The dithiolfunctionalized pyrene derivative can be used to modify the surface of a gold quartz crystal microbalance (QCM) to create a unique π-electron rich surface, which is able to interact with electron poor aromatic compounds. For example, exposure of the modified QCM surface to the nitroaromatic compound 2,4-dinitrotoluene (DNT) in solution results in a reduction in the resonant frequency of the QCM as a result of supramolecular interactions between the electron-rich pyrenyl surface layer and the electron-poor DNT molecules. These results suggest the potential use of such modified QCM surfaces for the detection of explosive NACs.
Resumo:
[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.
Resumo:
This paper reports the reaction of SnMe2Cl2 with adenosine, guanosine and inosine in aqueous solution at pH 4.5. The nucleosides give probably polymeric species in which there is monodentate coordination to O2′ of the ribose ring as indicated by 80 MHz PMR.
Resumo:
The syntheses of the complexes formulated as SnMe2Cl2(Ad)2 (I), SnMe2Cl2(Ado)2 (II), SnMe2Cl2- (9-MeAd)2 (III) [Ad = adenine, Ado = adenosine, 9-MeAd = 9-methyladenine] as well as the more unexpected SnPhCl2(OH)(Ad)2·3H2O (IV) and SnPhCl3(Ado)2 (V) by reaction of SnMe2Cl2 or SnPh2Cl2 with the appropriate bases in methanol is described. 1H NMR studies suggest that coordination is through the N-7 position of the adenine base.
Resumo:
The reaction of 2-chloro-3-methyl-1,4-naphthoquinone (3) with the anion of ethyl cyanoacetate led to a mixture of two epimeric fused-ring cyclopropane compounds, characterised as exo- and endo-1-cyano-1 -ethoxycarbonyl-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]naphthalene-2,7-dione (8) and (9). Various hydrolysis products of these were prepared and an X-ray crystallographic analysis was carried out on one of them, 1-carbamoyl-1 -carboxy-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]-naphthalene-2,7-dione (17). The reaction of 2-methyl-1,4-naphthoquinone (1) with ethyl diazoacetate gave a fused pyrazoline derivative, 3-ethoxycarbonyl-4-hydroxy-9a-methyl-1,9a-dihydro-benz[f]indazol-9-one (22), while reaction of 2-methyl-3-nitro-1,4-naphthoquinone (5) with diazomethane led to a fused Δ2-isoxazoline N-oxide, 3a-methyl-3,3a-dihydroisoxazolo[3,4-b]naphthalene-4,9-dione 1-oxide (26).
Resumo:
The first stable homoleptic alkenyls of the early transition metals, MRn, (R = C(Ph)=CMe2; M = Ti, Zr, Hf, n = 4; and M = Cr, n = 3) and the related species (C5H5)2MR2 (M = Ti, Zr) and (C5H5)2Zr(Cl)R have been prepared using appropriate organolithium reagents. Cleavage and insertion reactions are reported for the new compounds.