76 resultados para Alternative Conceptions
Resumo:
Proposals have been made for a common currency for East Asia, but the countries preparing to participate need to be in a state of economic convergence. We show that at least six countries of East Asia already satisfy this condition. There also needs to be a mechanism by which the new currency relates to other reserve currencies. We demonstrate that a numéraire could be defined solely from the actual worldwide consumption of food and energy per capita, linked to fiat currencies via world market prices. We show that real resource prices are stable in real terms, and likely to remain so. Furthermore, the link from energy prices to food commodity prices is permanent, arising from energy inputs in agriculture, food processing and distribu-tion. Calibration of currency value using a yardstick such as our SI numéraire offers an unbiased measure of the con-sistently stable cost of subsistence in the face of volatile currency exchange rates. This has the advantage that the par-ticipating countries need only agree to currency governance based on a common standards institution, a much less on-erous form of agreement than would be required in the creation of a common central bank.
Resumo:
Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting.
Resumo:
The chapter starts from the premise that an historically- and institutionally-formed orientation to music education at primary level in European countries privileges a nineteenth century Western European music aesthetic, with its focus on formal characteristics such as melody and rhythm. While there is a move towards a multi-faceted understanding of musical ability, a discrete intelligence and willingness to accept musical styles or 'open-earedness', there remains a paucity of documented evidence of this in research at primary school level. To date there has been no study undertaken which has the potential to provide policy makers and practitioners with insights into the degree of homogeneity or universality in conceptions of musical ability within this educational sector. Against this background, a study was set up to explore the following research questions: 1. What conceptions of musical ability do primary teachers hold a) of themselves and; b) of their pupils? 2. To what extent are these conceptions informed by Western classical practices? A mixed methods approach was used which included survey questionnaire and semi-structured interview. Questionnaires have been sent to all classroom teachers in a random sample of primary schools in the South East of England. This was followed up with a series of semi-structured interviews with a sub-sample of respondents. The main ideas are concerned with the attitudes, beliefs and working theories held by teachers in contemporary primary school settings. By mapping the extent to which a knowledge base for teaching can be resistant to change in schools, we can problematise primary schools as sites for diversity and migration of cultural ideas. Alongside this, we can use the findings from the study undertaken in an English context as a starting point for further investigation into conceptions of music, musical ability and assessment held by practitioners in a variety of primary school contexts elsewhere in Europe; our emphasis here will be on the development of shared understanding in terms of policies and practices in music education. Within this broader framework, our study can have a significant impact internationally, with potential to inform future policy making, curriculum planning and practice.
Resumo:
Efficient transport of stem/progenitor cells without affecting their survival and function is a key factor in any practical cell-based therapy. However, the current approach using liquid nitrogen for the transfer of stem cells requires a short delivery time window is technically challenging and financially expensive. The present study aims to use semipermeable alginate hydrogels (crosslinked by strontium) to encapsulate, store, and release stem cells, to replace the conventional cryopreservation method for the transport of therapeutic cells within world-wide distribution time frame. Human mesenchymal stem cell (hMSC) and mouse embryonic stem cells (mESCs) were successfully stored inside alginate hydrogels for 5 days under ambient conditions in an air-tight environment (sealed cryovial). Cell viability, of the cells extracted from alginate gel, gave 74% (mESC) and 80% (hMSC) survival rates, which compared favorably to cryopreservation. More importantly, the subsequent proliferation rate and detection of common stem cell markers (both in mRNA and protein level) from hMSCs and mESCs retrieved from alginate hydrogels were also comparable to (if not better than) results gained following cryopreservation. In conclusion, this new and simple application of alginate hydrogel encapsulation may offer a cheap and robust alternative to cryopreservation for the transport and storage of stem cells for both clinical and research purposes.
Resumo:
Ensemble learning can be used to increase the overall classification accuracy of a classifier by generating multiple base classifiers and combining their classification results. A frequently used family of base classifiers for ensemble learning are decision trees. However, alternative approaches can potentially be used, such as the Prism family of algorithms that also induces classification rules. Compared with decision trees, Prism algorithms generate modular classification rules that cannot necessarily be represented in the form of a decision tree. Prism algorithms produce a similar classification accuracy compared with decision trees. However, in some cases, for example, if there is noise in the training and test data, Prism algorithms can outperform decision trees by achieving a higher classification accuracy. However, Prism still tends to overfit on noisy data; hence, ensemble learners have been adopted in this work to reduce the overfitting. This paper describes the development of an ensemble learner using a member of the Prism family as the base classifier to reduce the overfitting of Prism algorithms on noisy datasets. The developed ensemble classifier is compared with a stand-alone Prism classifier in terms of classification accuracy and resistance to noise.
Resumo:
We performed mutual tapping experiments between two humans to investigate the conditions required for synchronized motion. A transition from an alternative mode to a synchronization mode was discovered under the same conditions when a subject changed from a reactive mode to an anticipation mode in single tapping experiments. Experimental results suggest that the cycle time for each tapping motion is tuned by a proportional control that is based on synchronization errors and cycle time errors. As the tapping frequency increases, the mathematical model based on the feedback control in the sensory-motor closed loop predicts a discrete mode transition as the gain factors of the proportional control decease. The conditions of the synchronization were shown as a consequence of the coupled dynamics based on the subsequent feedback loop in the sensory-motor system.
Resumo:
In the absence of market frictions, the cost-of-carry model of stock index futures pricing predicts that returns on the underlying stock index and the associated stock index futures contract will be perfectly contemporaneously correlated. Evidence suggests, however, that this prediction is violated with clear evidence that the stock index futures market leads the stock market. It is argued that traditional tests, which assume that the underlying data generating process is constant, might be prone to overstate the lead-lag relationship. Using a new test for lead-lag relationships based on cross correlations and cross bicorrelations it is found that, contrary to results from using the traditional methodology, periods where the futures market leads the cash market are few and far between and when any lead-lag relationship is detected, it does not last long. Overall, the results are consistent with the prediction of the standard cost-of-carry model and market efficiency.
Resumo:
This paper employs an extensive Monte Carlo study to test the size and power of the BDS and close return methods of testing for departures from independent and identical distribution. It is found that the finite sample properties of the BDS test are far superior and that the close return method cannot be recommended as a model diagnostic. Neither test can be reliably used for very small samples, while the close return test has low power even at large sample sizes
Resumo:
We present a Bayesian image classification scheme for discriminating cloud, clear and sea-ice observations at high latitudes to improve identification of areas of clear-sky over ice-free ocean for SST retrieval. We validate the image classification against a manually classified dataset using Advanced Along Track Scanning Radiometer (AATSR) data. A three way classification scheme using a near-infrared textural feature improves classifier accuracy by 9.9 % over the nadir only version of the cloud clearing used in the ATSR Reprocessing for Climate (ARC) project in high latitude regions. The three way classification gives similar numbers of cloud and ice scenes misclassified as clear but significantly more clear-sky cases are correctly identified (89.9 % compared with 65 % for ARC). We also demonstrate the poetential of a Bayesian image classifier including information from the 0.6 micron channel to be used in sea-ice extent and ice surface temperature retrieval with 77.7 % of ice scenes correctly identified and an overall classifier accuracy of 96 %.
Resumo:
Population modelling is increasingly recognised as a useful tool for pesticide risk assessment. For vertebrates that may ingest pesticides with their food, such as woodpigeon (Columba palumbus), population models that simulate foraging behaviour explicitly can help predicting both exposure and population-level impact. Optimal foraging theory is often assumed to explain the individual-level decisions driving distributions of individuals in the field, but it may not adequately predict spatial and temporal characteristics of woodpigeon foraging because of the woodpigeons’ excellent memory, ability to fly long distances, and distinctive flocking behaviour. Here we present an individual-based model (IBM) of the woodpigeon. We used the model to predict distributions of foraging woodpigeons that use one of six alternative foraging strategies: optimal foraging, memory-based foraging and random foraging, each with or without flocking mechanisms. We used pattern-oriented modelling to determine which of the foraging strategies is best able to reproduce observed data patterns. Data used for model evaluation were gathered during a long-term woodpigeon study conducted between 1961 and 2004 and a radiotracking study conducted in 2003 and 2004, both in the UK, and are summarised here as three complex patterns: the distributions of foraging birds between vegetation types during the year, the number of fields visited daily by individuals, and the proportion of fields revisited by them on subsequent days. The model with a memory-based foraging strategy and a flocking mechanism was the only one to reproduce these three data patterns, and the optimal foraging model produced poor matches to all of them. The random foraging strategy reproduced two of the three patterns but was not able to guarantee population persistence. We conclude that with the memory-based foraging strategy including a flocking mechanism our model is realistic enough to estimate the potential exposure of woodpigeons to pesticides. We discuss how exposure can be linked to our model, and how the model could be used for risk assessment of pesticides, for example predicting exposure and effects in heterogeneous landscapes planted seasonally with a variety of crops, while accounting for differences in land use between landscapes.
Resumo:
Green economy has become one of the most fashionable terms in global environmental public policy discussions and forums. Despite this popularity, and its being selected as one of the organizing themes of the United Nations Rio+20 Conference in Brazil, June 2012, its prospects as an effective mobilization tool for global environmental sustainability scholarship and practice remains unclear. A major reason for this is that much like its precursor concepts such as environmental sustainability and sustainable development, green economy is a woolly concept which lends itself to many interpretations. Hence, rather than resolve long-standing controversies, green economy merely reinvigorates existing debates over the visions, actors and policies best suited to secure a more sustainable future for all. In this review article, we aim to fill an important gap in scholarship by suggesting various ways in which green economy may be organized and synthesized as a concept, and especially in terms of its relationship with the idea of social and environmental justice. Accordingly, we offer a systemization of possible interpretations of green economy mapped onto a synthesis of existing typologies of environmental justice. This classification provides the context for future analysis of which, and how, various notions of green economy link with various conceptions of justice.