61 resultados para Allergen isoforms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell migration is a highly coordinated process and any aberration in the regulatory mechanisms could result in pathological conditions such as cancer. The ability of cancer cells to disseminate to distant sites within the body has made it difficult to treat. Cancer cells also exhibit plasticity that makes them able to interconvert from an elongated, mesenchymal morphology to an amoeboid blebbing form under different physiological conditions. Blebs are spherical membrane protrusions formed by actomyosin-mediated contractility of cortical actin resulting in increased hydrostatic pressure and subsequent detachment of the membrane from the cortex. Tumour cells use blebbing as an alternative mode of migration by squeezing through preexisting gaps in the ECM, and bleb formation is believed to be mediated by the Rho-ROCK signaling pathway. However, the involvement of transmembrane water and ion channels in cell blebbing has not been examined. In the present study, the role of the transmembrane water channels, aquaporins, transmembrane ion transporters and lipid signaling enzymes in the regulation of blebbing was investigated. Using 3D matrigel matrix as an in vitro model to mimic normal extracellular matrix, and a combination of confocal and time-lapse microscopy, it was found that AQP1 knockdown by siRNA ablated blebbing of HT1080 and ACHN cells, and overexpression of AQP1-GFP not only significantly increased bleb size with a corresponding decrease in bleb numbers, but also induced bleb formation in non-blebbing cell lines. Importantly, AQP1 overexpression reduces bleb lifespan due to faster bleb retraction. This novel finding of AQP1-facilitated bleb retraction requires the activity of the Na+/H+ pump as inhibition of the ion transporter, which was found localized to intracellular vesicles, blocked bleb retraction in both cell lines. This study also demonstrated that a differential regulation of cell blebbing by AQP isoforms exists as knockdown of AQP5 had no effect on bleb formation. Data from this study also demonstrates that the lipid signaling PLD2 signals through PA in the LPA-LPAR-Rho-ROCK axis to positively regulate bleb formation in both cell lines. Taken together, this work provides a novel role of AQP1 and Na+/H+ pump in regulation of cell blebbing, and this could be exploited in the development of new therapy to treat cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dystrophin, the 427 x 10(3) Mr product of the Duchenne muscular dystrophy (DMD) gene, was studied in human foetal skeletal muscle from 9 to 26 weeks of gestation. Dystrophin could be detected from at least 9 weeks of gestation at the sarcolemmal membrane of most myotubes, though there was differential staining with antibodies raised to various regions of the protein. Dystrophin immunostaining increased and became more uniform with age and by 26 weeks of gestation there was intense sarcolemmal staining of all myotubes. On a Western blot, a doublet of smaller relative molecular mass than that seen in adult tissue was detected in all foetuses studied. There was a gradual increase in abundance of the upper band from 9 to 26 weeks, and the lower band, although present in low amounts in young foetuses, increased significantly between 20 and 26 weeks of gestation. These data indicate that there are several specific isoforms of dystrophin present in developing skeletal muscle, though the role of these is unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK) was studied in freshly isolated adult rat heart preparations. In contrast to the situation in ventricular myocytes cultured from neonatal rat hearts, stimulation of MAPK activity by 1 mumol/L phorbol 12-myristate 13-acetate (PMA) was not consistently detectable in crude extracts. After fast protein liquid chromatography, MAPK isoforms p42MAPK and p44MAPK and two peaks of MEK were shown to be activated > 10-fold in perfused hearts or ventricular myocytes exposed to 1 mumol/L PMA for 5 minutes. The identities of MAPK or MEK were confirmed by immunoblotting and, for MAPK, by the "in-gel" myelin basic protein phosphorylation assay. In retrogradely perfused hearts, high coronary perfusion pressure (120 mm Hg for 5 minutes), norepinephrine (50 mumol/L for 5 minutes), or isoproterenol (50 mumol/L for 5 minutes) stimulated MAPK and MEK approximately 2- to 5-fold. In isolated myocytes, endothelin 1 (100 nmol/L for 5 minutes) also stimulated MAPK, but stimulation by norepinephrine or isoproterenol was difficult to detect. Immunoblotting showed that the relative abundances of MAPK and MEK protein in ventricles declined to < 20% of their postpartal abundances after 50 days. This may explain the difficulties encountered in assaying the activity of MAPK in crude extracts from adult hearts. We conclude that potentially hypertrophic agonists and interventions stimulate the MAPK cascade in adult rats and suggest that the MAPK cascade may be an important intracellular signaling pathway in this response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin > BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology and patterns of gene expression. This difference could not be attributed to dissimilarities between the duration of activation of p42/p44-MAPK by BK or ET-1. Thus activation of these signalling pathways alone may be insufficient to induce a powerful hypertrophic response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p21-activated protein kinases (PAKs) may participate in signalling from Cdc42/Rac1 to the stress-regulated MAPKs (SAPKs/JNKs and p38-/HOG-1-related-MAPKs). We characterized the expression and regulation of alpha PAK in cultured ventricular myocytes. alpha PAK was specifically immunoprecipitated from myocyte extracts. High basal alpha PAK activity was detected in unstimulated myocytes. Its activity was increased rapidly (<30 s) by hyperosmotic shock in the presence of okadaic acid, and was maximal by 3 min (187 +/- 7% relative to unstimulated cells). Endothelin-1 and interleukin-1beta, which also activate SAPKs/JNKs, did not increase alpha PAK activity and presumably act through different PAK isoforms or other mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extracellularly-responsive kinase (ERK) subfamily of mitogen-activated protein kinases (MAPKs) has been implicated in the regulation of cell growth and differentiation. Activation of ERKs involves a two-step protein kinase cascade lying upstream from ERK, in which the Raf family are the MAPK kinase kinases and the MEK1/MEK2 isoforms are the MAPK kinases. The linear sequence of Raf --> MEK --> ERK constitutes the ERK cascade. Although the ERK cascade is activated through growth factor-regulated receptor protein tyrosine kinases, they are also modulated through G protein-coupled receptors (GPCRs). All four G protein subfamilies (Gq/11 Gi/o, Gs and G12/13) influence the activation state of ERKs. In this review, we describe the ERK cascade and characteristics of its activation through GPCRs. We also discuss the identity of the intervening steps that may couple agonist binding at GPCRs to activation of the ERK cascade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SB203580 is a recognised inhibitor of p38-MAPKs. Here, we investigated the effects of SB203580 on cardiac SAPKs/JNKs. The IC50 for inhibition of p38-MAPK stimulation of MAPKAPK2 was approximately 0.07 microM, whereas that for total SAPK/JNK activity was 3-10 microM. SB203580 did not inhibit immunoprecipitated JNK1 isoforms. Three peaks of SAPK/JNK activity were separated by anion exchange chromatography, eluting in the isocratic wash (44 kDa), and at 0.08 M (46 and 52 kDa) and 0.15 M NaCl (54 kDa). SB203580 (10 microM) completely inhibited the 0.15 M NaCl activity and partially inhibited the 0.08 M NaCl activity. Since JNK1 antibodies immunoprecipitate the 46 kDa activity, this indicates that SB203580 selectively inhibits 52 and 54 kDa SAPKs/JNKs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAPKs), namely the stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs), the extracellularly responsive kinases (ERKs) and p38-MAPK, by oxidative stress as exemplified by H2O2 in primary cultures of neonatal rat ventricular myocytes. The 46 and 54 kDa species of SAPKs/JNKs were activated 5- and 10-fold, respectively, by 0.1 mM H2O2 (the maximally effective concentration). Maximal activation occurred at 15-30 min, but was still detectable after 2 h. Both ERK1 and ERK2 were activated 16-fold by 0.1 mM H2O2 with a similar time course to the SAPKs/JNKs, and this was comparable with their activation by 1 microM PMA, the most powerful activator of ERKs that we have so far identified in these cells. The activation of ERKs by H2O2 was inhibited by PD98059, which inhibits the activation of MAPK (or ERK) kinases, and by the protein kinase C (PKC) inhibitor, GF109203X. ERK activation was also inhibited by down-regulation of PMA-sensitive PKC isoforms. p38-MAPK was activated by 0.1 mM H2O2 as shown by an increase in its phosphorylation. However, maximal phosphorylation (activation) was more rapid (<5 min) than for the SAPKs/JNKs or the ERKs. We studied the downstream consequences of p38-MAPK activation by examining activation of MAPK-activated protein kinase 2 (MAPKAPK2) and phosphorylation of the MAPKAPK2 substrate, the small heat shock protein HSP25/27. As with p38-MAPK, MAPKAPK2 was rapidly activated (maximal within 5 min) by 0.1 mM H2O2. This activation was abolished by 10 microM SB203580, a selective inhibitor of certain p38-MAPK isoforms. The phosphorylation of HSP25/27 rapidly followed activation of MAPKAPK2 and was also inhibited by SB203580. Phosphorylation of HSP25/27 was associated with a decrease in its aggregation state. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in neonatal rat ventricular myocytes. Activation of all three MAPKs has been associated with the development of the hypertrophic phenotype. However, stimulation of p38-MAPK and the consequent phosphorylation of HSP25/27 may also be important in cardioprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pro-inflammatory cytokines may be important in the pathophysiological responses of the heart. We investigated the activation of the three mitogen-activated protein kinase (MAPK) subfamilies ¿c-Jun N-terminal kinases (JNKs), p38-MAPKs and extracellularly-responsive kinases (ERKs) by interleukin-1 beta (IL-1 beta) or tumour necrosis factor alpha (TNF alpha) in primary cultures of myocytes isolated from neonatal rat ventricles. Both cytokines stimulated a rapid (maximal within 10 min) increase in JNK activity. Although activation of JNKs by IL-1 beta was transient returning to control values within 1 h, the response to TNF alpha was sustained. IL-1 beta and TNF alpha also stimulated p38-MAPK phosphorylation, but the response to IL-1 beta was consistently greater than TNF alpha. Both cytokines activated ERKs, but to a lesser degree than that induced by phorbol esters. The transcription factors, c-Jun and ATF2, are phosphorylated by the MAPKs and are implicated in the upregulation of c-Jun. IL-1 beta and TNF alpha stimulated the phosphorylation of c-Jun and ATF2. However, IL-1 beta induced a greater increase in c-Jun protein. Inhibitors of protein kinase C (PKC) (Ro318220, GF109203X) and the ERK cascade (PD98059) attenuated the increase in c-Jun induced by IL-1 beta, but LY294002 (an inhibitor of phosphatidylinositol 3' kinase) and SB203580 (an inhibitor of p38-MAPK, which also inhibits certain JNK isoforms) had no effect. These data illustrate that some of the pathological effects of IL-1 beta and TNF alpha may be mediated through the MAPK cascades, and that the ERK cascade, rather than JNKs or p38-MAPKs, are implicated in the upregulation of c-Jun by IL-1 beta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extracellular signal-regulated kinases 1/2 (ERK1/2) are particularly implicated in the growth response of cardiac myocytes. In these cells, the ERK1/2 pathway is potently activated by Gq protein-coupled receptor agonists (such as endothelin-1 or alpha-adrenergic agonists), which activate protein kinase C isoforms. Here, we review the mechanisms associated with the activation of the ERK1/2 pathway by these agonists with particular emphasis on signal integration into the pathway. Signaling to the nucleus and the regulation of transcription factor activity associated with ERK1/2 activation in cardiac myocytes are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelin A (ET(A)) transmembrane receptors predominate in rat cardiac myocytes. These are G protein-coupled receptors whose actions are mediated by the G(q) heterotrimeric G proteins. Through these, ET-1 binding to ET(A)-receptors stimulates the hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to diacylglycerol and inositol 1,4,5-trisphosphate. Diacylglycerol remains in the membrane whereas inositol 1,4,5-trisphosphate is soluble (though its importance in the cardiac myocyte is still debated). Isoforms of the phospholipid-dependent protein kinase, protein kinase C (PKC), are intracellular receptors for diacylglycerol. Cytoplasmic nPKCdelta and nPKCepsilon detect increases in membrane diacylglycerols and translocate to the membrane. This brings about PKC activation, though modifications additional to binding to phospholipids and diacylglycerol are involved. The next event (probably associated with PKC activation) is the activation of the membrane-bound small G protein Ras by exchange of GTP for GDP. Ras.GTP loading translocates Raf family mitogen-activated protein kinase (MAPK) kinase kinases to the membrane, initiates the activation of Raf, and thus activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Over longer times, two analogous protein kinase cascades, the c-Jun N-terminal kinase and p38-mitogen-activated protein kinase cascades, become activated. As the signals originating from the ET(A) receptor are transmitted through these protein kinase pathways, other signalling molecules become phosphorylated, thus changing their biological activities. For example, ET-1 increases the expression of the c-jun transcription factor gene, and increases abundance and phosphorylation of c-Jun protein. These changes in c-Jun expression and phosphorylation are likely to be important in the regulation of gene transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oestrogens are critical for the display of lordosis behaviour and, in recent years, have also been shown to be involved in synaptic plasticity. In the brain, the regulation of ionotropic glutamate receptors has consequences for excitatory neurotransmission. Oestrogen regulation of the N-methyl-d-aspartate receptor subunit 2D (NR2D) has generated considerable interest as a possible molecular mechanism by which synaptic plasticity can be modulated. Since more than one isoform of the oestrogen receptor (ER) exists in mammals, it is possible that oestrogen regulation via the ERalpha and ERbeta isoforms on the NR2D oestrogen response element (ERE) is not equivalent. In the kidney fibroblast (CV1) cell line, we show that in response to 17beta-oestradiol, only ERalpha, not ERbeta, could upregulate transcription from the ERE which is in the 3' untranslated region of the NR2D gene. When this ERE is in the 5' position, neither ERalpha nor ERbeta showed transactivation capacity. Thyroid hormone receptor (TR) modulation of ER mediated induction has been shown for other ER target genes, such as the preproenkephalin and oxytocin receptor genes. Since the various TR isoforms exhibit distinct roles, we hypothesized that TR modulation of ER induction may also be isoform specific. This is indeed the case. The TRalpha1 isoform stimulated ERalpha mediated induction from the 3'-ERE whereas the TRbeta1 isoform inhibited this induction. This study shows that isoforms of both the ER and TR have different transactivation properties. Such flexible regulation and crosstalk by nuclear receptor isoforms leads to different transcriptional outcomes and the combinatorial logic may aid neuroendocrine integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of review Novel analyses of the relations between thyroid hormone receptor signaling and estrogen receptor—dependent mechanisms are timely for two sets of reasons. Clinically, both affect mood and foster neuronal growth and regeneration. Mechanistically, they overlap at the levels of DNA recognition elements, coactivators, and signal transduction systems. Crosstalk between thyroid hormone receptors and estrogen receptors is possibly important to integrate external signals to transcription within neurons. Recent findings It has been shown that reproductive functions, including behaviors, driven by estrogens can be antagonized by thyroid hormones, and it has been argued that such crosstalk is biologically adaptive to ensure optimal reproduction. Transcriptional facilitation during transient transfunction studies show that the interactions between thyroid receptor isoforms and estrogen receptor isoforms depend on cell type and promoter context. Overall, this pattern of interactions assures multiple and flexible means of transcriptional regulation. Surprisingly, in some brain areas, thyroid hormone actions can synergize with estrogenic effects, particularly when nongenomic modes of action are considered, such as kinase activation, which, as has been reported, affect later estrogen receptor—induced genomic events. Summary In summary, recent work with nerve cells has contributed to a paradigm shift in how the molecular and behavioral effects of hormones which act through nuclear receptors are viewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) alpha and beta isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRalpha1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light-dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit.