56 resultados para Alkenone, C37:3 C37:2
Resumo:
Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.
Resumo:
The synthesis and extraction of americium(III) and europium(III) from aqueous nitric acid solutions by the new BTBP ligands 6,6’-bis(5,5,7,7- tetramethyl-5,7-dihydrofuro[3,4-e]-1,2,4-triazin-3-yl)-2,2’-bipyridine (Cy5-O-Me4-BTBP), and 6,6’-bis(5,5,7,7-tetramethyl-5,7-dihydrothieno[3,4-e]-1,2,4-triazin-3-yl)- 2,2’-bipyridine (Cy5-S-Me4-BTBP) is described. The affinity for Am(III) and the selectivity for Am(III) over Eu(III) of Cy5-S-Me4-BTBP were generally higher than for Cy5-O-Me4-BTBP. For both ligands, the extraction of Am(III) and Eu(III) from 3 M HNO3 into 3 mM organic solutions varied with the diluent used. The highest distribution ratios and separation factors observed were in cyclohexanone and 2-methylcyclohexanone, respectively. For Cy5-S-Me4-BTBP, there is a strong correlation between the distribution ratio for Am(III) and the permittivity of the diluent used. With 1-octanol as the diluent, low distribution ratios (D(Am) < 1) were observed for Cy5-S-Me4-BTBP although this ligand extracts Am(III) selectively (SFAm/Eu = 16-46 from 1-4 M HNO3). For Cy5-S-Me4-BTBP, Am(III) is extracted as the disolvate. The distribution ratios for Am(III), and the separation factors for Am(III) over Eu(III) are both significantly higher for CyMe4-BTBP than they are for Cy5-O-Me4-BTBP and Cy5-S-Me4-BTBP in cyclohexanone. Changing the diluent from cyclohexanone to 2-methylcyclohexanone leads to a decrease in D(Am) but an increase in SFAm/Eu for Cy5-S-Me4-BTBP.
Resumo:
[Et3NH]4[Mo8O26] (1) was prepared by reacting triethylamine with either molybdenum trioxide dihydrate or with a solution of ammonium molybdate in aqueous HCl. An aqueous solution of complex 1 reacted with an excess of sodium chloride to give a mixture of [Et3NH]3[NaMo8O26] (2) and [Et3NH]2[Mo6O19] (3). Complex 2 was also formed on reacting sodium molybdate with triethylamine in aqueous HCl. In the reaction of 1 with potassium chloride the nature of the product obtained was critically dependent upon reaction time. After a 5.5 h reflux period a mixture of [Et3NH]3[KMo8O26] (4) and 3 was obtained, whereas upon prolonged reflux (24 h) only K4Mo8O26 · H2O (5) was precipitated. The X-ray crystal structure of 2 shows it to be polymeric, with each Na+ ion sandwiched between two β[Mo8O26]4− ions. Four oxygen atoms on one face of each β[Mo8O26]4− ion are coordinated to a Na+ ion, and four oxygens from the opposite face are bonded to the next Na+ ion in the polymer chain. This produces a zig-zag arrangement of Na+ ions throughout the molecular structure. Spectral, conductivity and voltammetry data are given.
Resumo:
Two new Mn(III) complexes of formulas [MnL1(N-3)(OMe)](2) (1) and [MnL2(N-3)(2)](n) (2) have been synthesized by using two tridentate NNO-donor Schiff base ligands HL1{(2-[(3-methylaminoethylimino)-methyl]-phenol)} and HL2 {(2-[1-(2-dimethylaminoethylimino)methyl]-phenol)}, respectively. Substitution of the H atom on the secondary amine group of the N-methyldiamine fragment of the Schiff base by a methyl group leads to a drastic structural change from a methoxido-bridged dimer (1) to a single mu(1,3)-azido-bridged 1D helical polymer (2). Both complexes were characterized by single-crystal X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The magnetic properties of compound I show the presence of weak ferromagnetic exchange interactions mediated by double methoiddo bridges (J = 0.95 cm(-1)). Compound 2 shows the existence of a weak antiferromangetic coupling along the chain (J = -8.5 cm(-1)) through the single mu(1,3)-N-3 bridge with a spin canting that leads to a long-range antiferromagnetic order at T-c approximate to 9.3 K and a canting leading to a weak ferromagnetic long-range order at T-c approximate to 8.5 K. It also exibits metamagnetic behavior at low temperatures with a critical field of ca.1.2 T due to the weak antiferromagnetic interchain interactions that appear in the canted ordered phase.
Resumo:
On stirring an equimolar mixture of 4-oxo-4H-chromene-3-carbaldehyde, ninhydrin and cyclohexyl isocyanide in CH(2)Cl(2)-MeOH (7: 1) at room temperature produces 3-cyclohexylimino-1-(2-hydroxy-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-1,3-dihydro-9H-furo[3,4-b]chromen-9-one which on hydrolysis produces 1-(2-hydroxy-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-1H-furo[3,4-b]chromene-3,9-dione. The structure of the latter compound was confirmed by single crystal X-ray diffraction
Resumo:
Lanthanide(III) complexes with N-donor ex-tractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr3+, Eu3+, Tb3+, and Yb3+ complexes of 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin3-yl)-1,10-phenanthroline(CyMe4-BTPhen) and the Pr3+, Eu3+, and Tb3+ complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotria-zin-3-yl)-2,2′-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two ofthe tetra-N-donor ligands to each Ln3+ ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln3+/LN4‑donor species (Ln = Pr3+, Eu3+, Tb3+) in methanol when the N-donor ligand was in excess. When the Ln3+ ion was in excess, evidence for formation of a 1:1 Ln3+/LN4‑donor complex species was observed. Luminescent lifetime studies of mixtures of Eu3+ with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu3+ and Tb3+ species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln3+/LN‑donor species.
Resumo:
As part of the SUBR:IM work (www.subrim.org.uk) being undertaken at The College, the research team for this project (Tim Dixon, Yasmin Pocock and Mike Waters) has produced the first two of three volumes covering Stage 2 of the research. Volume 1 examines the results from the national UK developer interviews (carried out in 2004-2005); National Land Use Database (NLUD) analysis (1998-2003); and residential planning permission analysis for Salford/Manchester and Barking & Dagenham (2000-2004) using Estates Gazette Interactive (EGi) data and published information. Volume 2 covers the sub-regional context for Thames Gateway and Greater Manchester, which form the basis for the case studies (these are to be published as Volume 3 Volume 2 (of 3): Sub-regional context (Thames Gateway and Greater Manchester)
Resumo:
The redox properties and reactivity of [Mo(CO)2(η3-allyl)(α-diimine)(NCS)] (α-diimine = bis(2,6-dimethylphenyl)-acenaphthenequinonediimine (2,6-xylyl-BIAN) and 2,2′-bipyridine (bpy)) were studied using cyclic voltammetry and IR/UV–Vis spectroelectrochemistry. [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN)(NCS)] was shown by X-ray crystallography to have an asymmetric (B-type) conformation. The extended aromatic system of the strong π-acceptor 2,6-xylyl-BIAN ligand stabilises the primary 1e−-reduced radical anion, [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN•−)(NCS)]−, that can be reduced further to give the solvento anion [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN)(THF)]−. The initial reduction of [Mo(CO)2(η3-allyl)(bpy)(NCS)] in THF at ambient temperature results in the formation of [Mo(CO)2(η3-allyl)(bpy)]2 by reaction of the remaining parent complex with [Mo(CO)2(η3-allyl)(bpy)]− produced by dissociation of NCS− from [Mo(CO)2(η3-allyl)(bpy•−)(NCS)]−. Further reduction of the dimer [Mo(CO)2(η3-allyl)(bpy)]2 restores [Mo(CO)2(η3-allyl)(bpy)]−. In PrCN at 183 K, [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN•−)(NCS)]− converts slowly to 2e−-reduced [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN)(PrCN)]− and free NCS−. At room temperature, the reduction path in PrCN involves mainly the dimer [Mo(CO)2(η3-allyl)(bpy)]2; however, the detailed course of the reduction within the spectroelectrochemical cell is complicated and involves a mixture of several unassigned products. Finally, it has been shown that the five-coordinate anion [Mo(CO)2(η3-allyl)(bpy)]− promotes in THF reduction of CO2 to CO and formate via the formation of the intermediate [Mo(CO)2(η3-allyl)(bpy)(O2CH)] and its subsequent reduction.
Resumo:
We present a novel method for retrieving high-resolution, three-dimensional (3-D) nonprecipitating cloud fields in both overcast and broken-cloud situations. The method uses scanning cloud radar and multiwavelength zenith radiances to obtain gridded 3-D liquid water content (LWC) and effective radius (re) and 2-D column mean droplet number concentration (Nd). By using an adaption of the ensemble Kalman filter, radiances are used to constrain the optical properties of the clouds using a forward model that employs full 3-D radiative transfer while also providing full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from a challenging cumulus cloud field produced by a large-eddy simulation snapshot. Uncertainty due to measurement error in overhead clouds is estimated at 20% in LWC and 6% in re, but the true error can be greater due to uncertainties in the assumed droplet size distribution and radiative transfer. Over the entire domain, LWC and re are retrieved with average error 0.05–0.08 g m-3 and ~2 μm, respectively, depending on the number of radiance channels used. The method is then evaluated using real data from the Atmospheric Radiation Measurement program Mobile Facility at the Azores. Two case studies are considered, one stratocumulus and one cumulus. Where available, the liquid water path retrieved directly above the observation site was found to be in good agreement with independent values obtained from microwave radiometer measurements, with an error of 20 g m-2.
Resumo:
Group 6 complexes of the type [M(CO)4(bpy)] (M=Cr, Mo, W) are capable of behaving as electrochemical catalysts for the reduction of CO2 at potentials less negative than those for the reduction of the radical anions [M(CO)4(bpy)].−. Cyclic voltammetric, chronoamperometric and UV/Vis/IR spectro-electrochemical data reveal that five-coordinate [M(CO)3(bpy)]2− are the active catalysts. The catalytic conversion is significantly more efficient in N-methyl-2-pyrrolidone (NMP) compared to tetrahydrofuran, which may reflect easier CO dissociation from 1e−-reduced [M(CO)4(bpy)].− in the former solvent, followed by second electron transfer. The catalytic cycle may also involve [M(CO)4(H-bpy)]− formed by protonation of [M(CO)3(bpy)]2−, especially in NMP. The strongly enhanced catalysis using an Au working electrode is remarkable, suggesting that surface interactions may play an important role, too.
Resumo:
We report the first examples of hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) ligands, and their applications as actinide(III) selective aqueous complexing agents. The combination of a hydrophobic diamide ligand in the organic phase and a hydrophilic tetrasulfonated bis-triazine ligand in the aqueous phase is able to separate Am(III) from Eu(III) by selective Am(III) complex formation across a range of nitric acid concentrations with very high selectivities, and without the use of buffers. In contrast, disulfonated bis-triazine ligands are unable to separate Am(III) from Eu(III) in this system. The greater ability of the tetrasulfonated ligands to retain Am(III) selectively in the aqueous phase than the corresponding disulfonated ligands appears to be due to the higher aqueous solubilities of the complexes of the tetrasulfonated ligands with Am(III). The selectivities for Am(III) complexation observed with hydrophilic tetrasulfonated bis-triazine ligands are in many cases far higher than those found with the polyaminocarboxylate ligands previously used as actinide-selective complexing agents, and are comparable to those found with the parent hydrophobic bis-triazine ligands. Thus we demonstrate a feasible alternative method to separate actinides from lanthanides than the widely studied approach of selective actinide extraction with hydrophobic bis-1,2,4-triazine ligands such as CyMe4-BTBP and CyMe4-BTPhen.