161 resultados para Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)
Resumo:
A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980–2012 are −0.63 ± 0.13, −0.71 ± 0.15 and −0.80 ± 0.17 K decade−1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere–ocean models over the 1980–2012 period, including the continued cooling over the first decade of the 21st century.
Resumo:
This article presents SPARE-ICE, the Synergistic Passive Atmospheric Retrieval Experiment-ICE. SPARE-ICE is the first Ice Water Path (IWP) product combining infrared and microwave radiances. By using only passive operational sensors, the SPARE-ICE retrieval can be used to process data from at least the NOAA 15 to 19 and MetOp satellites, obtaining time series from 1998 onward. The retrieval is developed using collocations between passive operational sensors (solar, terrestrial infrared, microwave), the CloudSat radar, and the CALIPSO lidar. The collocations form a retrieval database matching measurements from passive sensors against the existing active combined radar-lidar product 2C-ICE. With this retrieval database, we train a pair of artificial neural networks to detect clouds and retrieve IWP. When considering solar, terrestrial infrared, and microwave-based measurements, we show that any combination of two techniques performs better than either single-technique retrieval. We choose not to include solar reflectances in SPARE-ICE, because the improvement is small, and so that SPARE-ICE can be retrieved both daytime and nighttime. The median fractional error between SPARE-ICE and 2C-ICE is around a factor 2, a figure similar to the random error between 2C-ICE ice water content (IWC) and in situ measurements. A comparison of SPARE-ICE with Moderate Resolution Imaging Spectroradiometer (MODIS), Pathfinder Atmospheric Extended (PATMOS-X), and Microwave Surface and Precipitation Products System (MSPPS) indicates that SPARE-ICE appears to perform well even in difficult conditions. SPARE-ICE is available for public use.
Resumo:
A study has been carried out to assess the importance of radiosonde corrections in improving the agreement between satellite and radiosonde measurements of upper-tropospheric humidity. Infrared [High Resolution Infrared Radiation Sounder (HIRS)-12] and microwave [Advanced Microwave Sounding Unit (AMSU)-18] measurements from the NOAA-17 satellite were used for this purpose. The agreement was assessed by comparing the satellite measurements against simulated measurements using collocated radiosonde profiles of the Atmospheric Radiation Measurement (ARM) Program undertaken at tropical and midlatitude sites. The Atmospheric Radiative Transfer Simulator (ARTS) was used to simulate the satellite radiances. The comparisons have been done under clear-sky conditions, separately for daytime and nighttime soundings. Only Vaisala RS92 radiosonde sensors were used and an empirical correction (EC) was applied to the radiosonde measurements. The EC includes correction for mean calibration bias and for solar radiation error, and it removes radiosonde bias relative to three instruments of known accuracy. For the nighttime dataset, the EC significantly reduces the bias from 0.63 to 20.10 K in AMSU-18 and from 1.26 to 0.35 K in HIRS-12. The EC has an even greater impact on the daytime dataset with a bias reduction from 2.38 to 0.28 K in AMSU-18 and from 2.51 to 0.59 K in HIRS-12. The present study promises a more accurate approach in future radiosonde-based studies in the upper troposphere.
Resumo:
Many institutions worldwide have developed ocean reanalyses systems (ORAs) utilizing a variety of ocean models and assimilation techniques. However, the quality of salinity reanalyses arising from the various ORAs has not yet been comprehensively assessed. In this study, we assess the upper ocean salinity content (depth-averaged over 0–700 m) from 14 ORAs and 3 objective ocean analysis systems (OOAs) as part of the Ocean Reanalyses Intercomparison Project. Our results show that the best agreement between estimates of salinity from different ORAs is obtained in the tropical Pacific, likely due to relatively abundant atmospheric and oceanic observations in this region. The largest disagreement in salinity reanalyses is in the Southern Ocean along the Antarctic circumpolar current as a consequence of the sparseness of both atmospheric and oceanic observations in this region. The West Pacific warm pool is the largest region where the signal to noise ratio of reanalysed salinity anomalies is >1. Therefore, the current salinity reanalyses in the tropical Pacific Ocean may be more reliable than those in the Southern Ocean and regions along the western boundary currents. Moreover, we found that the assimilation of salinity in ocean regions with relatively strong ocean fronts is still a common problem as seen in most ORAs. The impact of the Argo data on the salinity reanalyses is visible, especially within the upper 500m, where the interannual variability is large. The increasing trend in global-averaged salinity anomalies can only be found within the top 0–300m layer, but with quite large diversity among different ORAs. Beneath the 300m depth, the global-averaged salinity anomalies from most ORAs switch their trends from a slightly growing trend before 2002 to a decreasing trend after 2002. The rapid switch in the trend is most likely an artefact of the dramatic change in the observing system due to the implementation of Argo.
Resumo:
Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-layer-depth, upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea ice thickness, salinity), providing guidance for future enhancement of the observing and data assimilation systems.
Resumo:
TIGGE was a major component of the THORPEX (The Observing System Research and Predictability Experiment) research program, whose aim is to accelerate improvements in forecasting high-impact weather. By providing ensemble prediction data from leading operational forecast centers, TIGGE has enhanced collaboration between the research and operational meteorological communities and enabled research studies on a wide range of topics. The paper covers the objective evaluation of the TIGGE data. For a range of forecast parameters, it is shown to be beneficial to combine ensembles from several data providers in a Multi-model Grand Ensemble. Alternative methods to correct systematic errors, including the use of reforecast data, are also discussed. TIGGE data have been used for a range of research studies on predictability and dynamical processes. Tropical cyclones are the most destructive weather systems in the world, and are a focus of multi-model ensemble research. Their extra-tropical transition also has a major impact on skill of mid-latitude forecasts. We also review how TIGGE has added to our understanding of the dynamics of extra-tropical cyclones and storm tracks. Although TIGGE is a research project, it has proved invaluable for the development of products for future operational forecasting. Examples include the forecasting of tropical cyclone tracks, heavy rainfall, strong winds, and flood prediction through coupling hydrological models to ensembles. Finally the paper considers the legacy of TIGGE. We discuss the priorities and key issues in predictability and ensemble forecasting, including the new opportunities of convective-scale ensembles, links with ensemble data assimilation methods, and extension of the range of useful forecast skill.
Resumo:
It is argued that existing polar prediction systems do not yet meet users’ needs; and possible ways forward in advancing prediction capacity in polar regions and beyond are outlined. The polar regions have been attracting more and more attention in recent years, fuelled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with less in situ observations, and with numerous local physical processes that are less well-represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere-sea ice-ocean models, even for short-term prediction; and insight into polar-lower latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting community will work together with stakeholders in a period of intensive observing, modelling, prediction, verification, user-engagement and educational activities.
Resumo:
Data assimilation – the set of techniques whereby information from observing systems and models is combined optimally – is rapidly becoming prominent in endeavours to exploit Earth Observation for Earth sciences, including climate prediction. This paper explains the broad principles of data assimilation, outlining different approaches (optimal interpolation, three-dimensional and four-dimensional variational methods, the Kalman Filter), together with the approximations that are often necessary to make them practicable. After pointing out a variety of benefits of data assimilation, the paper then outlines some practical applications of the exploitation of Earth Observation by data assimilation in the areas of operational oceanography, chemical weather forecasting and carbon cycle modelling. Finally, some challenges for the future are noted.
Resumo:
The s–x model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, water area and vegetation density on the retrieval of soil moisture from simulated single- and multi-angle observing systems were tested. Uncertainty in water area proved the most serious problem for both systems, causing errors of a few percent in soil moisture retrieval. Single-angle retrieval was largely unaffected by the other factors studied here. Multiple-angle retrievals errors around one percent arose from heterogeneity in either soil roughness or soil moisture. Errors of a few percent were caused by vegetation heterogeneity. A simple extension of the model vegetation representation was shown to reduce this error substantially for scenes containing a range of vegetation types.
Resumo:
Using the Met Office large-eddy model (LEM) we simulate a mixed-phase altocumulus cloud that was observed from Chilbolton in southern England by a 94 GHz Doppler radar, a 905 nm lidar, a dual-wavelength microwave radiometer and also by four radiosondes. It is important to test and evaluate such simulations with observations, since there are significant differences between results from different cloud-resolving models for ice clouds. Simulating the Doppler radar and lidar data within the LEM allows us to compare observed and modelled quantities directly, and allows us to explore the relationships between observed and unobserved variables. For general-circulation models, which currently tend to give poor representations of mixed-phase clouds, the case shows the importance of using: (i) separate prognostic ice and liquid water, (ii) a vertical resolution that captures the thin layers of liquid water, and (iii) an accurate representation the subgrid vertical velocities that allow liquid water to form. It is shown that large-scale ascents and descents are significant for this case, and so the horizontally averaged LEM profiles are relaxed towards observed profiles to account for these. The LEM simulation then gives a reasonable. cloud, with an ice-water path approximately two thirds of that observed, with liquid water at the cloud top, as observed. However, the liquid-water cells that form in the updraughts at cloud top in the LEM have liquid-water paths (LWPs) up to half those observed, and there are too few cells, giving a mean LWP five to ten times smaller than observed. In reality, ice nucleation and fallout may deplete ice-nuclei concentrations at the cloud top, allowing more liquid water to form there, but this process is not represented in the model. Decreasing the heterogeneous nucleation rate in the LEM increased the LWP, which supports this hypothesis. The LEM captures the increase in the standard deviation in Doppler velocities (and so vertical winds) with height, but values are 1.5 to 4 times smaller than observed (although values are larger in an unforced model run, this only increases the modelled LWP by a factor of approximately two). The LEM data show that, for values larger than approximately 12 cm s(-1), the standard deviation in Doppler velocities provides an almost unbiased estimate of the standard deviation in vertical winds, but provides an overestimate for smaller values. Time-smoothing the observed Doppler velocities and modelled mass-squared-weighted fallspeeds shows that observed fallspeeds are approximately two-thirds of the modelled values. Decreasing the modelled fallspeeds to those observed increases the modelled IWC, giving an IWP 1.6 times that observed.
Resumo:
Europe's widely distributed climate modelling expertise, now organized in the European Network for Earth System Modelling (ENES), is both a strength and a challenge. Recognizing this, the European Union's Program for Integrated Earth System Modelling (PRISM) infrastructure project aims at designing a flexible and friendly user environment to assemble, run and post-process Earth System models. PRISM was started in December 2001 with a duration of three years. This paper presents the major stages of PRISM, including: (1) the definition and promotion of scientific and technical standards to increase component modularity; (2) the development of an end-to-end software environment (graphical user interface, coupling and I/O system, diagnostics, visualization) to launch, monitor and analyse complex Earth system models built around state-of-art community component models (atmosphere, ocean, atmospheric chemistry, ocean bio-chemistry, sea-ice, land-surface); and (3) testing and quality standards to ensure high-performance computing performance on a variety of platforms. PRISM is emerging as a core strategic software infrastructure for building the European research area in Earth system sciences. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
An eddy current testing system consists of a multi-sensor probe, a computer and a special expansion card and software for data-collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.