73 resultados para Absolute Capacity
Resumo:
Food restriction has a great impact on skeletal muscle mass by inducing muscle protein breakdown to provide substrates for energy production through gluconeogenesis. Genetic models of hyper-muscularity interfere with the normal balance between protein synthesis and breakdown which eventually results in extreme muscle growth. Mutations or deletions in the myostatin gene result in extreme muscle mass. Here we evaluated the impact of food restriction for a period of 5 weeks on skeletal muscle size (i.e., fibre cross-sectional area), fibre type composition and contractile properties (i.e., tetanic and specific force) in myostatin null mice. We found that this hyper-muscular model was more susceptible to catabolic processes than wild type mice. The mechanism of skeletal muscle mass loss was examined and our data shows that the myostatin null mice placed on a low calorie diet maintained the activity of molecules involved in protein synthesis and did not up-regulate the expression of genes pivotal in ubiquitin-mediated protein degradation. However, we did find an increase in the expression of genes associated with autophagy. Surprisingly, the reduction on muscle size was followed by improved tetanic and specific force in the null mice compared to wild type mice. These data provide evidence that food restriction may revert the hyper-muscular phenotype of the myostatin null mouse restoring muscle function.
Resumo:
Armed with the ‘equity’ and ‘conservation’ arguments that have a deep resonance with farming communities, developing countries are crafting a range of measures designed to protect farmers’ access to innovations, reward their contributions to the conservation and enhancement of plant genetic resources and provide incentives for sustained on-farm conservation. These measures range from the commericialization of farmers’ varieties to the conferment of a set of legally enforceable rights on farming communities – the exercise of which is expected to provide economic rewards to those responsible for on-farm conservation and innovation. The rights-based approach has been the cornerstone of legislative provision for implementing farmers’ rights in most developing countries. In drawing up these measures, developing countries do not appear to have systematically examined or provided for the substantial institutional capacity required for the effective implementation of farmers’ rights provisions. The lack of institutional capacity threatens to undermine any prospect of serious implementation of these provisions. More importantly, the expectation that significant incentives for on-farm conservation and innovation will flow from these ‘rights’ may be based on a flawed understanding of the economics of intellectual property rights. While farmers’ rights may provide only limited rewards for conservation, they may still have the effect of diluting the incentives for innovative institutional breeding programs – with the private sector increasingly relying on non-IPR instruments to profit from innovation. The focus on a rights-based approach may also draw attention away from alternative stewardship-based approaches to the realization of farmers’ rights objectives.
Resumo:
Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the ‘Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance’ (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm−1 with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum.
Resumo:
Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1- silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane-1-d, Me3SiD, in the gas phase. The reaction was studied at total pressures up to 100 Torr (with and without added SF6) over the temperature range of 295−407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log[(k/(cm3 molecule−1 s−1)] = (−13.22 ± 0.15) + [(13.20 ± 1.00) kJ mol−1]/(RT ln 10). When compared with previously published kinetic data for the reaction of ClSiH with Me3SiH, kinetic isotope effects, kD/kH, in the range from 7.4 (297 K) to 6.4 (407 K) were obtained. These far exceed values of 0.4−0.5 estimated for a single-step insertion process. Quantum chemical calculations (G3MP2B3 level) confirm not only the involvement of an intermediate complex, but also the existence of a low-energy internal isomerization pathway which can scramble the D and H atom labels. By means of Rice−Ramsperger−Kassel−Marcus modeling and a necessary (but small) refinement of the energy surface, we have shown that this mechanism can reproduce closely the experimental isotope effects. These findings provide the first experimental evidence for the isomerization pathway and thereby offer the most concrete evidence to date for the existence of intermediate complexes in the insertion reactions of silylenes.
Resumo:
Consent's capacity to legitimise actions and claims is limited by conditions such as coercion, which render consent ineffective. A better understanding of the limits to consent's capacity to legitimise can shed light on a variety of applied debates, in political philosophy, bioethics, economics and law. I show that traditional paternalist explanations for limits to consent's capacity to legitimise cannot explain the central intuition that consent is often rendered ineffective when brought about by a rights violation or threatened rights violation. I argue that this intuition is an expression of the same principles of corrective justice that underlie norms of compensation and rectification. I show how these principles can explain and clarify core intuitions about conditions which render consent ineffective, including those concerned with the consenting agent's option set, his mental competence, and available information.
Resumo:
A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography–MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues.
Resumo:
The paper develops a more precise specification and understanding of the process of national-level knowledge accumulation and absorptive capabilities by applying the reasoning and evidence from the firm-level analysis pioneered by Cohen and Levinthal (1989, 1990). In doing so, we acknowledge that significant cross-border effects due to the role of both inward and outward FDI exist and that assimilation of foreign knowledge is not only confined to catching-up economies but is also carried out by countries at the frontier-sharing phase. We postulate a non-linear relationship between national absorptive capacity and the technological gap, due to the effects of the cumulative nature of the learning process and the increase in complexity of external knowledge as the country approaches the technological frontier. We argue that national absorptive capacity and the accumulation of knowledge stock are simultaneously determined. This implies that different phases of technological development require different strategies. During the catching-up phase, knowledge accumulation occurs predominately through the absorption of trade and/or inward FDI-related R&D spillovers. At the pre-frontier-sharing phase onwards, increases in the knowledge base occur largely through independent knowledge creation and actively accessing foreign-located technological spillovers, inter alia through outward FDI-related R&D, joint ventures and strategic alliances.
Resumo:
Purpose – The construction industry is a very important part of the Malaysian economy. The government's aim is to make the industry more productive, efficient and safe. Small to medium-sized enterprises (SMEs) are at the core of the Malaysian construction industry and account for about 90 per cent of companies undertaking construction work. One of the main challenges faced by the Malaysian construction industry is the ability to absorb new knowledge and technology and to implement it in the construction phase. The purpose of this paper is to consider absorptive capacity in Malaysian construction SMEs in rural areas. Design/methodology/approach – The research was conducted in three stages: first, understanding the Malaysian construction industry; second, a literature review on the issues related to absorptive capacity and discussions with the Construction Industry Development Board (CIDB); and third, multiple case studies in five construction SMEs operating in a rural area to validate the factors influencing absorptive capacity. Findings – Nine key factors were identified influencing absorptive capacity in Malaysian construction SMEs operating in rural areas. These factors involved: cost and affordability; availability and supply; demand; infrastructure; policies and regulations; labour readiness; workforce attitude and motivation; communication and sources of new knowledge and; culture. Originality/value – The key factors influencing absorptive capacity presented in this paper are based on validation from the case studies in five construction SMEs in Malaysia. The research focuses on how they operate in rural areas; however, the research results have wider application than just Malaysia. The key factors identified as influencing absorptive capacity can serve as a basis for considering knowledge absorption in the wider context by SMEs in other developing countries.
Resumo:
Forests are a store of carbon and an eco-system that continually removes carbon dioxide from the atmosphere. If they are sustainably managed, the carbon store can be maintained at a constant level, while the trees removed and converted to timber products can form an additional long term carbon store. The total carbon store in the forest and associated ‘wood chain’ therefore increases over time, given appropriate management. This increasing carbon store can be further enhanced with afforestation. The UK’s forest area has increased continually since the early 1900s, although the rate of increase has declined since its peak in the late 1980s, and it is a similar picture in the rest of Europe. The increased sustainable use of timber in construction is a key market incentive for afforestation, which can make a significant contribution to reducing carbon emissions. The case study presented in this paper demonstrates the carbon benefits of a Cross Laminated Timber (CLT) solution for a multi-storey residential building in comparison with a more conventional reinforced concrete solution. The embodied carbon of the building up to completion of construction is considered, together with the stored carbon during the life of the building and the impact of different end of life scenarios. The results of the study show that the total stored carbon in the CLT structural frame is 1215tCO2 (30tCO2 per housing unit). The choice of treatment at end of life has a significant effect on the whole life embodied carbon of the CLT frame, which ranges from -1017 tCO2e for re-use to +153tCO2e for incinerate without energy recovery. All end of life scenarios considered result in lower total CO2e emissions for the CLT frame building compared with the reinforced concrete frame solution.
Resumo:
This article examines how conventional studio production strategies were active in the construction of political meaning in the 1974 television play 'Absolute Beginners' written by Trevor Griffiths. Produced for the BBC anthology series Fall of Eagles, the play dramatises Lenin's involvement with the Russian Social Democratic Workers Party (RSDWP) and explores the contradictions between personal ethics and political necessity. Through close textual analysis and contextual discussion of other plays in the series, this piece demonstrates how shot patterns and spatial and performative devices in 'Absolute Beginners' supported the drama's socialist-humanist themes. Drawing on existing writing about the studio mode, it argues that the qualities of intimacy and presentational distance that it engendered were highly appropriate for the personal and the political dialectic in 'Absolute Beginners'. While using authorship as a convenient category for referring to the coherence of Griffiths' thematic concerns and dramatic structure during this period, the article complicates notions of the television dramatist as author by arguing for the importance of visual style and showing how 'ordinary' studio form was operational in the play's political meanings.
Resumo:
We study the degree to which Kraichnan–Leith–Batchelor (KLB) phenomenology describes two-dimensional energy cascades in α turbulence, governed by ∂θ/∂t+J(ψ,θ)=ν∇2θ+f, where θ=(−Δ)α/2ψ is generalized vorticity, and ψ^(k)=k−αθ^(k) in Fourier space. These models differ in spectral non-locality, and include surface quasigeostrophic flow (α=1), regular two-dimensional flow (α=2) and rotating shallow flow (α=3), which is the isotropic limit of a mantle convection model. We re-examine arguments for dual inverse energy and direct enstrophy cascades, including Fjørtoft analysis, which we extend to general α, and point out their limitations. Using an α-dependent eddy-damped quasinormal Markovian (EDQNM) closure, we seek self-similar inertial range solutions and study their characteristics. Our present focus is not on coherent structures, which the EDQNM filters out, but on any self-similar and approximately Gaussian turbulent component that may exist in the flow and be described by KLB phenomenology. For this, the EDQNM is an appropriate tool. Non-local triads contribute increasingly to the energy flux as α increases. More importantly, the energy cascade is downscale in the self-similar inertial range for 2.5<α<10. At α=2.5 and α=10, the KLB spectra correspond, respectively, to enstrophy and energy equipartition, and the triad energy transfers and flux vanish identically. Eddy turnover time and strain rate arguments suggest the inverse energy cascade should obey KLB phenomenology and be self-similar for α<4. However, downscale energy flux in the EDQNM self-similar inertial range for α>2.5 leads us to predict that any inverse cascade for α≥2.5 will not exhibit KLB phenomenology, and specifically the KLB energy spectrum. Numerical simulations confirm this: the inverse cascade energy spectrum for α≥2.5 is significantly steeper than the KLB prediction, while for α<2.5 we obtain the KLB spectrum.
Resumo:
Capacity dimensioning is one of the key problems in wireless network planning. Analytical and simulation methods are usually used to pursue the accurate capacity dimensioning of wireless network. In this paper, an analytical capacity dimensioning method for WCDMA with high speed wireless link is proposed based on the analysis on relations among system performance and high speed wireless transmission technologies, such as H-ARQ, AMC and fast scheduling. It evaluates system capacity in closed-form expressions from link level and system level. Numerical results show that the proposed method can calculate link level and system level capacity for WCDMA system with HSDPA and HSUPA.