59 resultados para ANGIOSPERM PHYLOGENY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim  We provide a new quantitative analysis of lizard reproductive ecology. Comparative studies of lizard reproduction to date have usually considered life-history components separately. Instead, we examine the rate of production (productivity hereafter) calculated as the total mass of offspring produced in a year. We test whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environmental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location  World-wide. Methods  We assembled a database containing 551 lizard species, their phylogenetic relationships and multiple life history and ecological variables from the literature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results  Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. Island species were less productive than continental species. Mass-specific productivity was positively correlated with environmental temperature, but not with body temperature. Viviparous lizards were less productive than egg-laying species. Diet and primary productivity were not associated with productivity in any model. Other effects, including lower productivity of fossorial, nocturnal and active foraging species were confounded with phylogeny. Productivity was not lower in species at risk of extinction. Main conclusions  Our analyses show the value of focusing on the rate of annual biomass production (productivity), and generally supported associations between productivity and environmental temperature, factors that affect mortality and the number of broods a lizard can produce in a year, but not with measures of body temperature, environmental productivity or diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Surianaceae)) as the presence of free filaments and marginal/ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and empirical studies of life history aim to account for resource allocation to the different components of fitness: survival, growth, and reproduction. The pioneering evolutionary ecologist David Lack [(1968) Ecological Adaptations for Breeding in Birds (Methuen and Co.,London)] suggested that reproductive output in birds reflects adaptation to environmental factors such as availability of food and risk of predation, but subsequent studies have not always supported Lack’s interpretation. Here using a dataset for 980 bird species (Dataset S1), a phylogeny, and an explicit measure of reproductive productivity, we test predictions for how mass-specific productivity varies with body size, phylogeny,and lifestyle traits. We find that productivity varies negatively with body size and energetic demands of parental care and positively with extrinsic mortality. Specifically: (i) altricial species are 50% less productive than precocial species; (ii) species with female-only care of offspring are about 20% less productive than species with other methods of parental care; (iii) nonmigrants are 14% less productive than migrants; (iv) frugivores and nectarivores are about 20% less productive than those eating other foods; and (v) pelagic foragers are 40% less productive than those feeding in other habitats. A strong signal of phylogeny suggests that syndromes of similar life-history traits tend to be conservative within clades but also to have evolved independently in different clades. Our results generally support both Lack’s pioneering studies and subsequent research on avian life history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cisregulatory regions play a dominant role in phenotypic evolution. Key words: ASPM, MCPH1, CDK5RAP2, CENPJ, brain, neurogenesis, primates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is controversy about whether traditional medicine can guide drug discovery, and investment in ethnobotanically led research has fluctuated. One view is that traditionally used plants are not necessarily efficacious and there are no robust methods for distinguishing the ones that are most likely to be bioactive when selecting species for further testing. Here, we reconstruct a genus-level molecular phylogeny representing the 20,000 species found in the floras of three disparate biodiversity hotspots: Nepal, New Zealand and the Cape of South Africa. Borrowing phylogenetic methods from community ecology, we reveal significant clustering of the 1,500 traditionally used species, and provide a direct measure of the relatedness of the three medicinal floras. We demonstrate shared phylogenetic patterns across the floras: related plants from these regions are used to treat medical conditions in the same therapeutic areas. This strongly suggests independent discovery of plant efficacy, an interpretation corroborated by the presence of a significantly greater proportion of known bioactive species in these plant groups than in a random sample. Phylogenetic cross-cultural comparison can focus screening efforts on a subset of traditionally used plants that are richer in bioactive compounds, and could revitalise the use of traditional knowledge in bioprospecting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do ⁄ do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking. We examined telomeres ⁄ telomerase in cultured cells from > 60 mammalian species to place different uses of telomeres in a broad mammalian context. Phylogeny-based statistical analysis reconstructed ancestral states. Our analysis suggested that the ancestral mammalian phenotype included short telomeres (< 20 kb, as we now see in humans) and repressed telomerase. We argue that the repressed telomerase was a response to a higher mutation load brought on by the evolution of homeothermy. With telomerase repressed, we then see the evolution of replicative aging. Telomere length inversely correlated with lifespan, while telomerase expression co-evolved with body size. Multiple independent times smaller, shorter-lived species changed to having longer telomeres and expressing telomerase. Trade-offs involving reducing the energetic ⁄ cellular costs of specific oxidative protection mechanisms (needed to protect < 20 kb telomeres in the absence oftelomerase) could explain this abandonment of replicative aging. These observations provide a conceptual framework for understanding different uses of telomeres in mammals, support a role for human-like telomeres in allowing longer lifespans to evolve, demonstrate the need to include telomere length in the analysis of comparative studies of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging. Key words: evolution of telomeres; immortalization; telomerase; replicative aging; senescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecological theory predicts that communities using the same resources should have similar structure, but evolutionary constraints on colonization and niche shifts may hamper such convergence. Multitrophic communities of wasps exploiting fig fruits, which first evolved about 75MYA, do not show long-term “inheritance” of taxonomic (lineage) composition or species diversity. However, communities on three continents have converged ecologically in the presence and relative abundance of five insect guilds that we define. Some taxa fill the same niches in each community (phylogenetic niche conservatism). However, we show that overall convergence in ecological community structure depends also on a combination of niche shifts by resident lineages and local colonizations of figs by other insect lineages. Our study explores new ground, and develops new heuristic tools, in combining ecology and phylogeny to address patterns in the complex multitrophic communities of insect on plants, which comprise a large part of terrestrial biodiversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the variation in the mean relative shoot Ca content within the angiosperms at the ordinal level. Data were derived from studies in the literature in which the shoot Ca content of two or more species had been compared, and from a hydroponic experiment in which plants were selected to represent the relative number of species within each angiosperm order. Across all angiosperms, most of the variation in shoot Ca content occurred at and above the level of the order. Relative shoot Ca contents and variances correlated between literature and experimental data. In general, orders of commelinoid monocots had lower Ca contents than other monocot or eudicot orders. These results are used to illustrate how physiological and ecological hypotheses can be formulated using literature data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcium (Ca) concentration of plant shoot tissues varies systematically between angiosperm orders. The phylogenetic variation in the shoot concentration of other mineral nutrients has not yet been described at an ordinal level. The aims of this study were (1) to quantify the shoot mineral concentration of different angiosperm orders, (2) to partition the phylogenetic variation in shoot mineral concentration between and within orders, (3) to determine if the shoot concentration of different minerals are correlated across angiosperm species, and (4) to compare experimental data with published ecological survey data on 81 species sampled from their natural habitats. Species, selected pro rata from different angiosperm orders, were grown in a hydroponic system under a constant external nutrient regime. Shoots of 117 species were sampled during vegetative growth. Significant variation in shoot carbon (C), calcium (Ca), potassium (K), and magnesium (Mg) concentration occurred between angiosperm orders. There was no evidence for systematic differences in shoot phosphorus (P) or organic-nitrogen (N) concentration between orders. At a species level, there were strong positive correlations between shoot Ca and Mg concentration, between shoot P and organic-N concentration, and between shoot K concentration and shoot fresh weight:dry weight ratio. Shoot C and cation concentration correlated negatively at a species level. Species within the Poales and the Caryophyllales had distinct shoot mineralogies in both the designed experiment and in the ecological survey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. Most species of Cercospora are known only from their morphological characters in vivo. Although the genus contains more than 5 000 names, very few cultures and associated DNA sequence data are available. In this study, 360 Cercospora isolates, obtained from 161 host species, 49 host families and 39 countries, were used to compile a molecular phylogeny. Partial sequences were derived from the internal transcribed spacer regions and intervening 5.8S nrRNA, actin, calmodulin, histone H3 and translation elongation factor 1-alpha genes. The resulting phylogenetic clades were evaluated for application of existing species names and five novel species are introduced. Eleven species are epi-, lecto- or neotypified in this study. Although existing species names were available for several clades, it was not always possible to apply North American or European names to African or Asian strains and vice versa. Some species were found to be limited to a specific host genus, whereas others were isolated from a wide host range. No single locus was found to be the ideal DNA barcode gene for the genus, and species identification needs to be based on a combination of gene loci and morphological characters. Additional primers were developed to supplement those previously published for amplification of the loci used in this study. TAXONOMIC NOVELTIES: New species - Cercospora coniogrammes Crous & R.G. Shivas, Cercospora delaireae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora euphorbiae-sieboldianae C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora pileicola C. Nakash., Crous, U. Braun & H.D. Shin, Cercospora vignigena C. Nakash., Crous, U. Braun & H.D. Shin. Typifications: epitypifications - Cercospora alchemillicola U. Braun & C.F. Hill, Cercospora althaeina Sacc., Cercospora armoraciae Sacc., Cercospora corchori Sawada, Cercospora mercurialis Pass., Cercospora olivascens Sacc., Cercospora violae Sacc.; neotypifications - Cercospora fagopyri N. Nakata & S. Takim., Cercospora sojina Hara.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphology-based delimitation of genera in the Cheilanthoid ferns has proved to be problematic and understanding of the phylogeny and relationships amongst Cheilanthoid ferns based on morphological characters has posed even further difficulties, owing perhaps in large part to adaptation by many taxa to xeric habitats, as well as convergent evolution. It is only now with the application of DNA sequence data that relationships of species and genera are becoming clear. Here, we present results of cpDNA sequence data from species that have been traditionally placed in the genus Doryopteris and, based on both these results, and morphological and distribution data, this study helps clarify the concept of the genus Doryopteris its position within the Cheilanthoid ferns and the status of Lytoneuron. As a result, three genera are redefined: Doryopteris, Lytoneuron and Ormopteris.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike most other biological species, humans can use cultural innovations to occupy a range of environments, raising the intriguing question of whether human migrations move relatively independently of habitat or show preferences for familiar ones. The Bantu expansion that swept out of West Central Africa beginning ∼5,000 y ago is one of the most influential cultural events of its kind, eventually spreading over a vast geographical area a new way of life in which farming played an increasingly important role. We use a new dated phylogeny of ∼400 Bantu languages to show that migrating Bantu-speaking populations did not expand from their ancestral homeland in a “random walk” but, rather, followed emerging savannah corridors, with rainforest habitats repeatedly imposing temporal barriers to movement. When populations did move from savannah into rainforest, rates of migration were slowed, delaying the occupation of the rainforest by on average 300 y, compared with similar migratory movements exclusively within savannah or within rainforest by established rainforest populations. Despite unmatched abilities to produce innovations culturally, unfamiliar habitats significantly alter the route and pace of human dispersals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The notion that large body size confers some intrinsic advantage to biological species has been debated for centuries. Using a phylogenetic statistical approach that allows the rate of body size evolution to vary across a phylogeny, we find a long-term directional bias toward increasing size in the mammals. This pattern holds separately in 10 of 11 orders for which sufficient data are available and arises from a tendency for accelerated rates of evolution to produce increases, but not decreases, in size. On a branch-by-branch basis, increases in body size have been more than twice as likely as decreases, yielding what amounts to millions and millions of years of rapid and repeated increases in size away from the small ancestral mammal. These results are the first evidence, to our knowledge, from extant species that are compatible with Cope’s rule: the pattern of body size increase through time observed in the mammalian fossil record. We show that this pattern is unlikely to be explained by several nonadaptive mechanisms for increasing size and most likely represents repeated responses to new selective circumstances. By demonstrating that it is possible to uncover ancient evolutionary trends from a combination of a phylogeny and appropriate statistical models, we illustrate how data from extant species can complement paleontological accounts of evolutionary history, opening up new avenues of investigation for both.