136 resultados para 5-Aminolaevulinic acid
Resumo:
The acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) complement from dormant hazel (Corylus avellana L.) seeds was found to exhibit significant electrophoretic heterogeneity partially attributable to the presence of distinct molecular forms. In axiferous tissue, total acid phosphatase activity increased in a biphasic fashion during chilling, a treatment necessary to alleviate seed dormancy. Three acid phosphatase isozymes were isolated from cotyledons of dormant hazel seeds by successive ammonium sulphate precipitation, size-exclusion, Concanavalin A affinity, cation- and anion-exchange chromatographies resulting in 75-, 389- and 191-fold purification (APase1, APase2, APase3, respectively). The three glycosylated isoforms were isolated to catalytic homogeneity as determined by electrophoretic, kinetic and heat-inactivation studies. The native acid phosphatase complement of hazel seeds had an apparent Mr of 81.5±3.5 kDa as estimated by size-exclusion chromatography, while the determined pI values were 5.1 (APase1), 6.9 (APase2) and 7.3 (APase3). The optimum pH for p-nitrophenyl phosphate hydrolysis was pH 3 (APase1), pH 5.6 (APase2) and pH 6 (APase3). The hazel isozymes hydrolysed a variety of phosphorylated substrates in a non-specific manner, exhibiting low Km and the highest specificity constant (Vmax/Km) for pyrophosphate. They were not primary phytases since they could not initiate phytic acid hydrolysis, while APase2 and APase3 had significant phospho-tyrosine phosphatase activity. Inorganic phosphate was a competitive inhibitor, while activity was significantly impaired in the presence of vanadate and fluoride.
Resumo:
TGF-beta1 levels increase after vascular injury and promote vascular smooth muscle cell (VSMC) proliferation. We define a nonviral gene delivery system that targets alphavbeta3 and alpha5beta1 integrins that are expressed on proliferating VSMCs and strongly induced by TGF-beta1. A 15-amino acid RGDNP-containing peptide from American Pit Viper venom was linked to a Lys(16) peptide as vector (molossin vector) and complexed with Lipofectamine or fusogenic peptide for delivery of luciferase or beta-galactosidase reporter genes to primary cultures of human, rabbit, and rat VSMCs. Preincubation of VSMCs with TGF-beta1 for 24 h, but not with PDGF-BB, interferon-gamma, TNF-alpha, nor PMA, increased alphavbeta3 and alpha5beta1 expressions on VSMCs and enhanced gene delivery of molossin vector. Thus beta-galactosidase activity increased from 35 +/- 5% (controls) to 75 +/- 5% after TGF-beta1 treatment, and luciferase activity increased fourfold over control values. Potential use of this system in vessel bypass surgery was examined in an ex vivo rat aortic organ culture model after endothelial damage. Molossin vector system delivered beta-galactosidase to VSMCs in the vessel wall that remained for up to 12 days posttransfection. The molossin vector system, when combined with TGF-beta1, enhances gene delivery to proliferating VSMCs and might have clinical applications for certain vasculoproliferative diseases.
Resumo:
We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO2 (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 g l(-1); whiled the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure. oxygen, an optimal flow rate was observed at 300 nil min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 ( +/-0.6) kJ mol(-1). (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In this study, the extraction properties of a synergistic system consisting of 2,6-bis-(benzoxazolyl)-4-dodecyloxylpyridine (BODO) and 2-bromodecanoic acid (HA) in tert-butyl benzene (TBB) have been investigated as a function of ionic strength by varying the nitrate ion and perchlorate ion concentrations. The influence of the hydrogen ion concentration has also been investigated. Distribution ratios between 0.03-12 and 0.003-0.8 have been found for Am(III) and Eu(HI), respectively, but there were no attempts to maximize these values. It has been shown that the distribution ratios decrease with increasing amounts of ClO4-, NO3-, and H+. The mechanisms, however, by which the decrease occurs, are different. In the case of increasing perchlorate ion concentration, the decrease in extraction is linear in a log-log plot of the distribution ratio vs. the ionic strength, while in the nitrate case the complexation between nitrate and Am or Eu increases at high nitrate ion concentrations and thereby decreases the distribution ratio in a non-linearway. The decrease in extraction could be caused by changes in activity coefficients that can be explained with specific ion interaction theory (SIT); shielding of the metal ions, and by nitrate complexation with Am and Eu as competing mechanism at high ionic strengths. The separation factor between Am and Eu reaches a maximum at similar to1 M nitrate ion concentration. Thereafter the values decrease with increasing nitrate ion concentrations.
Resumo:
Investigations into the quinate to shikimate transformation have been carried out, the results of which have been exploited in the synthesis of a novel difluoromethylene homologue of shikimic acid from (-)-quinic acid. Martin's sulfurane {Ph2S[OC(CF3)(2)Ph](2)} was the reagent of choice for the key dehydration step of this synthesis. The results of investigations into the synthesis of the important natural product analogue, 6,6-difluoroshikimic acid are also reported. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
[15-(CH3)-C-13-H-2]-dihydroartemisinic acid (2a) and [15-(CH3)-H-2]-dihydroartemisinic acid (2b) have been fed via the root to intact Artemisia annua plants and their transformations studied in vivo by one-dimensional H-2 NMR spectroscopy and two-dimensional, C-13-H-2 correlation NMR spectroscopy (C-13-(2) H COSY). Labelled dihydroartemisinic acid was transformed into 16 12-carboxy-amorphane and cadinane sesquiterpenes within a few days in the aerial parts of A. annua, although transformations in the root were much slower and more limited. Fifteen of these 16 metabolites have been reported previously as natural products from A. annua. Evidence is presented that the first step in the transformation of dihydroartemisinic acid in vivo is the formation of allylic hydroperoxides by the reaction of molecular oxygen with the Delta(4,5)-double bond in this compound. The origin of all 16 secondary metabolites might then be explained by the known further reactions of such hydroperoxides. The qualitative pattern for the transformations of dihydroartemisinic acid in vivo was essentially unaltered when a comparison was made between plants, which had been kept alive and plants which were allowed to die after feeding of the labelled precursor. This, coupled with the observation that the pattern of transformations of 2 in vivo demonstrated very close parallels with the spontaneous autoxidation chemistry for 2, which we have recently demonstrated in vitro, has lead us to conclude that the main 'metabolic route' for dihydroartemisinic acid in A. annua involves its spontaneous autoxidation and the subsequent spontaneous reactions of allylic hydroperoxides which are derived from 2. There may be no need to invoke the participation of enzymes in any of the later biogenetic steps leading to all 16 of the labelled 11,13-dihydro-amorphane sesquiterpenes which are found in A. annua as natural products. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
[15-(CH3)-C-13-H-2]-Dihydroartemisinic acid (2a), [15-(CH3)-H-2]-dihydroartemisinic acid (2b) and [15-(CH3)-C-13]-dihydroartemisinic acid (2c) have been obtained in good yield and high isotopic enrichment by a reconstructive synthesis from artemisinin. These labelled compounds were designed to be used in biosynthetic experiments to determine the origins of artemisinin and other sesquiterpene natural products from Artemisia annua. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Artemisinic acid labeled with both C-13 and H-2 at the 15-position has been fed to intact plants of Artemisia annua via the cut stem, and its in vivo transformations studied by 1D- and 2D-NMR spectroscopy. Seven labeled metabolites have been isolated, all of which are known as natural products from this species. The transformations of artemisinic acid-as observed both for a group of plants, which was kept alive by hydroponic administration of water and for a group, which was allowed to die by desiccation-closely paralleled those, which have been recently described for its 11,13-dihydro analog, dihydroartemisinic acid. It seems likely therefore that similar mechanisms, involving spontaneous autoxidation of the Delta(4,5) double bond in both artemisinic acid and dihydroartemisinic acid and subsequent rearrangements of the resultant allylic hydroperoxides, may be involved in the biological transformations, which are undergone by both compounds. All of the sesquiterpene metabolites, which were obtained from in vivo transformations of artemisinic acid retained their unsaturation at the 11,13-position, and there was no evidence for conversion into any 11,13-dihydro metabolite, including artemisinin, the antimalarial drug, which is produced by A. annua. This observation led to the proposal of a unified biosynthetic scheme, which accounts for the biogenesis of many of the amorphane and cadinane sesquiterpenes that have been isolated as natural products from A. annua. In this scheme, there is a bifurcation in the biosynthetic pathway starting from amorpha-4,11-diene leading to either artemisinic acid or dihydroartemisinic acid; these two committed precursors are then, respectively, the parents for the two large families of highly oxygenated 11,13-dehydro and 11,13-dihydro sesquiterpene metabolites, which are known from this species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The extracting agent 2,6-bis(4,6-di-pivaloylamino-1,3,5-triazin-2-yl)-pyridine (L-5) in n-octanol was found, in synergy with 2-bromodecanoic acid, to give D-Am/D-Eu separation factors (SFs) between 2.4 and 3.7 when used to extract the metal ions from 0.02-0.12 M HNO3. Slightly higher SFs (4-6) were obtained in the absence of the synergist when the ligand was used to extract Am(III) and Eu(III) from 0.98 M HNO3. In order to investigate the possible nature of the extracted species crystal structures of L-5 and the complex formed between Yb(III) with 2,6-bis(4,6-di-amino-1,3,5-triazin-2-yl)-pyridine (L-4) were also determined. The structure of L-5 shows 3 methanol solvent molecules all of which form 2 or 3 hydrogen bonds with triazine nitrogen atoms, amide nitrogen or oxygen atoms, or pyridine nitrogen atoms. However, L-5 is relatively unstable in metal complexation reactions and loses amide groups to form the parent tetramine L-4. The crystal structure of Yb(L-4)(NO3)(3) shows ytterbium in a 9-coordinate environment being bonded to three donor atoms of the ligand and three bidentate nitrate ions. The solvent extraction properties of L-4 and L-5 are far inferior to those found for the 2,6-bis-(1,2,4-triazin-3-yl)-pyridines (L-1) which have SF values of ca. 140 and theoretical calculations have been made to compare the electronic properties of the ligands. The electronic charge distribution in L-4 and L-5 is similar to that found in other terdentate ligands such as terpyridine which have equally poor extraction properties and suggests that the unique properties of L-1 evolve from the presence of two adjacent nitrogen atoms in the triazine rings.
Resumo:
Single crystal X-ray diffraction study reveals that the water soluble tetrapeptide H2N-Ile-Aib-Leu-m-ABA-CO2H, containing non-coded Aib (alpha-amino isobutyric acid) and m-ABA (meta-amino benzoic acid), crystallizes with two smallest possible diastereomeric beta-hairpin molecules in the asymmetric unit. Although in both of the molecules the chiralities at Ile(1) and Leu(3) are S, a conformational reversal in the back bone chain is observed to produce the beta-hairpins with beta-turn conformations of type II and II'. Interestingly Aib which is known to adopt helical conformation, adopts unusual semi-extended conformation with phi: -49.5(5)degrees, psi: 135.2(5)degrees in type II and phi: 50.6(6)degrees. psi: -137.0(4)degrees in type II' for occupying the i + 1 position of the beta-turns. The two hairpin molecules are further interlocked through intermolecular hydrogen bonds and electrostatic interactions between CO2- and -+NH3 groups to form dimeric supramolecular beta-hairpin aggregate in the crystal state. The CD measurement and 2D NMR study of the peptide in aqueous medium support the existence of beta-hairpin structure in water. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Single crystal X-ray diffraction studies reveal that the incorporation of meta-amino benzoic acid in the middle of a helix forming hexapeptide sequence such as in peptide I Boc-Ile(1)-Aib(2)-Val(3)-m-ABA(4)-Ile(5)-Aib(6)-Leu(7)-OMe (Aib: alpha-amino isobutyric acid: m-ABA: meta-amino benzoic acid) breaks the helix propagation to produce a turn-linker-turn (T-L-T) foldamer in the solid state. In the crystalline state two conformational isomers of peptide I self-assemble in antiparallel fashion through intermolecular hydrogen bonds and aromatic pi-pi interactions to form a molecular duplex. The duplexes are further interconnected through intermolecular hydrogen bonds to form a layer of peptides. The layers are stacked one on top of the other through van der Waals interactions to form hydrophilic channels filled with solvent methanol. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.
Resumo:
The tetradentate ligand (C-5-BTBP) was able to extract americium(III) selectively from nitric acid. In octanol/kerosene the distribution ratios suggest that stripping will be possible. C-5-BTBP has unusual properties and potentially offers a means of separating metals, which otherwise are difficult to separate. For example C-5-BTBP has the potential to separate paliadium(II) from a mixture containing rhodium(III) and ruthenium(H) nitrosyl. In addition, C-5-BTBP has the potential to remove traces of cadmium from effluent or from solutions of other metals contaminated with cadmium. C-5-BTBP has potential as a reagent for the separation of americium(III) from solutions contaminated with iron(III) and nickel(II), hence offering a means of concentrating americium(III) for analytical purposes from nitric acid solutions containing high concentrations of iron(III) or nickel(II).
Resumo:
The extraction of americium(III), curium(III), and the lanthanides(III) from nitric acid by 6,6'- bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2'] bipyridine (CyMe4-BTBP) has been studied. Since the extraction kinetics were slow, N,N'-dimethyl-N,N'-dioctyl-2-(2-hexyloxy-ethyl)malonamide (DMDOHEMA) was added as a phase transfer reagent. With a mixture of 0.01 M CyMe4-BTBP + 0.25 M DMDOHEMA in n -octanol, extraction equilibrium was reached within 5 min of mixing. At a nitric acid concentration of 1 M, an americium(III) distribution ratio of approx. 10 was achieved. Americium(III)/lanthanide(III) separation factors between 50 (dysprosium) and 1500 (lanthanum) were obtained. Whereas americium(III) and curium(III) were extracted as disolvates, the stoichiometries of the lanthanide(III) complexes were not identified unambiguously, owing to the presence of DMDOHEMA. In the absence of DMDOHEMA, both americium(III) and europium(III) were extracted as disolvates. Back-extraction with 0.1 M nitric acid was thermodynamically possible but rather slow. Using a buffered glycolate solution of pH=4, an americium(III) distribution ratio of 0.01 was obtained within 5 min of mixing. There was no evidence of degradation of the extractant, for example, the extraction performance of CyMe4-BTBP during hydrolylsis with 1 M nitric acid did not change over a two month contact.
Resumo:
Two vanadium(V) complexes, [VO(L-1)]acac)] (1) and [VO(L-2)(acac)] (2), where H2L1 = N,N-bis(2-hydroxy-3-5-di-tert-butyl-benzyl)propylamine and H2L2 = 2,2'-selenobis(4,6-di-tert-butylphenol), have been synthesized and characterized by elemental analyses, IR, V-51 NMR, both in the solid and in solution, and cyclic voltammetric studies. Single crystal X-ray studies reveal that in complex 1 the vanadium atom is octahedrally coordinated with an O5N donor environment, where the oxygen atom of the V-V=O moiety and the N atom of the ONO ligand occupy the axial sites while two oxygen atoms (O1 and O2) from the bisphenolate ligand and two oxygen atoms (O3 and O4) from the acac ligand occupy the equatorial plane. A similar bonding pattern has also been encountered for 2 with the exception that a Se atom instead of N is involved in weak bonding to the metal center. Both complexes showed reversible cyclic voltammeric responses and E-1/2 appears at -0.18 and 0.10 V versus NHE for complexes 1 and 2, respectively. The kinetics of oxidation of ascorbic acid by complex 1 were carried out in 50% MeCN-50% HO (v/v) at 25 degrees C. The high formation constant value, Q = 63 +/- 7 M-1, reveals that the reaction proceeds through the rapid formation of a H-bonded intermediate. The low k(2)Q(2)/k(1)Q(1) ratio (13.4) for 1 points out that there is extensive H-bonding between the oxygen atom of the V-V=O group and the OH group of ascorbic acid. (c) 2007 Published by Elsevier Ltd.