78 resultados para 380305 Knowledge Representation and Machine Learning
Resumo:
Deception-detection is the crux of Turing’s experiment to examine machine thinking conveyed through a capacity to respond with sustained and satisfactory answers to unrestricted questions put by a human interrogator. However, in 60 years to the month since the publication of Computing Machinery and Intelligence little agreement exists for a canonical format for Turing’s textual game of imitation, deception and machine intelligence. This research raises from the trapped mine of philosophical claims, counter-claims and rebuttals Turing’s own distinct five minutes question-answer imitation game, which he envisioned practicalised in two different ways: a) A two-participant, interrogator-witness viva voce, b) A three-participant, comparison of a machine with a human both questioned simultaneously by a human interrogator. Using Loebner’s 18th Prize for Artificial Intelligence contest, and Colby et al.’s 1972 transcript analysis paradigm, this research practicalised Turing’s imitation game with over 400 human participants and 13 machines across three original experiments. Results show that, at the current state of technology, a deception rate of 8.33% was achieved by machines in 60 human-machine simultaneous comparison tests. Results also show more than 1 in 3 Reviewers succumbed to hidden interlocutor misidentification after reading transcripts from experiment 2. Deception-detection is essential to uncover the increasing number of malfeasant programmes, such as CyberLover, developed to steal identity and financially defraud users in chatrooms across the Internet. Practicalising Turing’s two tests can assist in understanding natural dialogue and mitigate the risk from cybercrime.
Resumo:
Successful innovation diffusion process may well take the form of knowledge transfer process. Therefore, the primary objectives of this paper include: first, to evaluate the interrelations between transfer of knowledge and diffusion of innovation; and second to develop a model to establish a connection between the two. This has been achieved using a four-step approach. The first step of the approach is to assess and discuss the theories relating to knowledge transfer (KT) and innovation diffusion (ID). The second step focuses on developing basic models for KT and ID, based on the key theories surrounding these areas. A considerable amount of literature has been written on the association between knowledge management and innovation, the respective fields of KT and ID. The next step, therefore, explores the relationship between innovation and knowledge management in order to identify the connections between the latter, i.e. KT and ID. Finally, step four proposes and develops an integrated model for KT and ID. As the developed model suggests the sub-processes of knowledge transfer can be connected to the innovation diffusion process in several instances as discussed and illustrated in the paper.
Resumo:
This chapter examines encounters between international institutions that frame their objectives through a global policy language, and people whose lives are the focus for change heralded by these institutions. It explores how a global policy language, which seeks consensus and equality, can be at odds with local understandings, conflict and intentions.