53 resultados para 3-D geometry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shock front as detected by in situ measurements at L1. A time series of mass measurements from the STEREO COR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dB/dt) on the ground. The predicted dB/dt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global hydrographic and air–sea freshwater flux datasets are used to investigate ocean salinity changes over 1950–2010 in relation to surface freshwater flux. On multi-decadal timescales, surface salinity increases (decreases) in evaporation (precipitation) dominated regions, the Atlantic–Pacific salinity contrast increases, and the upper thermocline salinity maximum increases while the salinity minimum of intermediate waters decreases. Potential trends in E–P are examined for 1950–2010 (using two reanalyses) and 1979–2010 (using four reanalyses and two blended products). Large differences in the 1950–2010 E–P trend patterns are evident in several regions, particularly the North Atlantic. For 1979–2010 some coherency in the spatial change patterns is evident but there is still a large spread in trend magnitude and sign between the six E–P products. However, a robust pattern of increased E–P in the southern hemisphere subtropical gyres is seen in all products. There is also some evidence in the tropical Pacific for a link between the spatial change patterns of salinity and E–P associated with ENSO. The water cycle amplification rate over specific regions is subsequently inferred from the observed 3-D salinity change field using a salt conservation equation in variable isopycnal volumes, implicitly accounting for the migration of isopycnal surfaces. Inferred global changes of E–P over 1950–2010 amount to an increase of 1 ± 0.6 % in net evaporation across the subtropics and an increase of 4.2 ± 2 % in net precipitation across subpolar latitudes. Amplification rates are approximately doubled over 1979–2010, consistent with accelerated broad-scale warming but also coincident with much improved salinity sampling over the latter period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Incoherent scatter data from non-thermal F-region ionospheric plasma are analysed, using theoretical spectra predicted by Raman et al. It is found that values of the semi-empirical drift parameter D∗, associated with deviations of the ion velocity distribution from a Maxwellian, and the plasma temperatures can be rigorously deduced (the results being independent of the path of iteration) if the angle between the line-of-sight and the geomagnetic field is larger than about 15–20 degrees. For small aspect angles, the deduced value of the average (or 3-D) ion temperature remains ambiguous and the analysis is restricted to the determination of the line-of-sight temperature because the theoretical spectrum is insensitive to non-thermal effects when the plasma is viewed along directions almost parallel to the magnetic field. This limitation is expected to apply to any realistic model of the ion velocity distribution, and its consequences are discussed. Fit strategies which allow for mixed ion composition are also considered. Examples of fits to data from various EISCAT observing programmes are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Life history parameters and reproductive behaviors of the harlequin bug, Murgantia histrionica Hahn (Heteroptera: Pentatomidae), were determined. Total developmental time from egg to adult was ≈48 d. After a sexual maturation period of ≈7 d, both sexes mated repeatedly, with females laying multiple egg masses of 12 eggs at intervals of 3 d. Adult females lived an average of 41 d, whereas adult males lived an average of 25 d. Courtship and copulation activities peaked in the middle of the photophase. In mating experiments in which mixed sex pairs of virgin and previously mated bugs were combined in all possible combinations, the durations of courtship and copulation by virgin males were significantly longer with both virgin and previously mated females than the same behaviors for previously mated males. When given a choice between a virgin or previously mated female, previously mated males preferred to mate with virgin females, whereas virgin males showed no preference for virgin over previously mated females. Analyses of mating behaviors with ethograms and behavioral transition matrices suggested that a primary reason for failure to copulate by virgin males was the incorrect rotation of their pygophores to the copulation position, so that successful alignment of the genitalia could not occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The trajectories of pheromone plumes in canopied habitats, such as orchards, have been little studied. We documented the capture of male navel orangeworm moths, Amyelois transitella, in female-baited traps positioned at 5 levels, from ground level to the canopy top, at approximately 6 m above ground, in almond orchards. Males were captured in similar proportions at all levels, suggesting that they do not favor a particular height during ranging flight. A 3-D sonic anemometer was used to establish patterns of wind flow and temperature at 6 heights from 2.08 to 6.65 m in an almond orchard with a 5 m high canopy, every 3 h over 72 h. The horizontal velocity of wind flow was highest above the canopy, where its directionality also was the most consistent. During the time of A. transitella mating (0300–0600), there was a net vertical displacement upward. Vertical buoyancy combined with only minor reductions in the distance that plumes will travel in the lower compared to the upper canopy suggest that the optimal height for release of pheromone from high-release-rate sources, such as aerosol dispensers (“puffers”), that are deployed at low densities (e.g., 3 per ha.) would be at mid or low in the canopy, thereby facilitating dispersion of disruptant throughout the canopy. Optimal placement of aerosol dispensers will vary with the behavioral ecology of the target pest; however, our results suggest that current protocols, which generally propose dispenser placement in the upper third of the canopy, should be reevaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study aimed to identify key parameters influencing N utilization and develop prediction equations for manure N output (MN), feces N output (FN), and urine N output (UN). Data were obtained under a series of digestibility trials with nonpregnant dry cows fed fresh grass at maintenance level. Grass was cut from 8 different ryegrass swards measured from early to late maturity in 2007 and 2008 (2 primary growth, 3 first regrowth, and 3 second regrowth) and from 2 primary growth early maturity swards in 2009. Each grass was offered to a group of 4 cows and 2 groups were used in each of the 8 swards in 2007 and 2008 for daily measurements over 6 wk; the first group (first 3 wk) and the second group (last 3 wk) assessed early and late maturity grass, respectively. Average values of continuous 3-d data of N intake (NI) and output for individual cows ( = 464) and grass nutrient contents ( = 116) were used in the statistical analysis. Grass N content was positively related to GE and ME contents but negatively related to grass water-soluble carbohydrates (WSC), NDF, and ADF contents ( < 0.01), indicating that accounting for nutrient interrelations is a crucial aspect of N mitigation. Significantly greater ratios of UN:FN, UN:MN, and UN:NI were found with increased grass WSC contents and ratios of N:WSC, N:digestible OM in total DM (DOMD), and N:ME ( < 0.01). Greater NI, animal BW, and grass N contents and lower grass WSC, NDF, ADF, DOMD, and ME concentrations were significantly associated with greater MN, FN, and UN ( < 0.05). The present study highlighted that using grass lower in N and greater in fermentable energy in animals fed solely fresh grass at maintenance level can improve N utilization, reduce N outputs, and shift part of N excretion toward feces rather than urine. These outcomes are highly desirable in mitigation strategies to reduce nitrous oxide emissions from livestock. Equations predicting N output from BW and grass N content explained a similar amount of variability as using NI and grass chemical composition (excluding DOMD and ME), implying that parameters easily measurable in practice could be used for estimating N outputs. In a research environment, where grass DOMD and ME are likely to be available, their use to predict N outputs is highly recommended because they strongly improved of the equations in the current study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observers generally fail to recover three-dimensional shape accurately from binocular disparity. Typically, depth is overestimated at near distances and underestimated at far distances [Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351–1360]. A simple prediction from this is that disparity-defined objects should appear to expand in depth when moving towards the observer, and compress in depth when moving away. However, additional information is provided when an object moves from which 3D Euclidean shape can be recovered, be this through the addition of structure from motion information [Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2, 343–349], or the use of non-generic strategies [Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31–47]. Here, we investigated shape constancy for objects moving in depth. We found that to be perceived as constant in shape, objects needed to contract in depth when moving toward the observer, and expand in depth when moving away, countering the effects of incorrect distance scaling (Johnston, 1991). This is a striking example of the failure of shape con- stancy, but one that is predicted if observers neither accurately estimate object distance in order to recover Euclidean shape, nor are able to base their responses on a simpler processing strategy.