599 resultados para 260502 Surfacewater Hydrology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method for assessing forecast skill and predictability that involves the identification and tracking of extratropical cyclones has been developed and implemented to obtain detailed information about the prediction of cyclones that cannot be obtained from more conventional analysis methodologies. The cyclones were identified and tracked along the forecast trajectories, and statistics were generated to determine the rate at which the position and intensity of the forecasted storms diverge from the analyzed tracks as a function of forecast lead time. The results show a higher level of skill in predicting the position of extratropical cyclones than the intensity. They also show that there is potential to improve the skill in predicting the position by 1 - 1.5 days and the intensity by 2 - 3 days, via improvements to the forecast model. Further analysis shows that forecasted storms move at a slower speed than analyzed storms on average and that there is a larger error in the predicted amplitudes of intense storms than the weaker storms. The results also show that some storms can be predicted up to 3 days before they are identified as an 850-hPa vorticity center in the analyses. In general, the results show a higher level of skill in the Northern Hemisphere (NH) than the Southern Hemisphere (SH); however, the rapid growth of NH winter storms is not very well predicted. The impact that observations of different types have on the prediction of the extratropical cyclones has also been explored, using forecasts integrated from analyses that were constructed from reduced observing systems. A terrestrial, satellite, and surface-based system were investigated and the results showed that the predictive skill of the terrestrial system was superior to the satellite system in the NH. Further analysis showed that the satellite system was not very good at predicting the growth of the storms. In the SH the terrestrial system has significantly less skill than the satellite system, highlighting the dominance of satellite observations in this hemisphere. The surface system has very poor predictive skill in both hemispheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper extensions to an existing tracking algorithm are described. These extensions implement adaptive tracking constraints in the form of regional upper-bound displacements and an adaptive track smoothness constraint. Together, these constraints make the tracking algorithm more flexible than the original algorithm (which used fixed tracking parameters) and provide greater confidence in the tracking results. The result of applying the new algorithm to high-resolution ECMWF reanalysis data is shown as an example of its effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recently published paper. spherical nonparametric estimators were applied to feature-track ensembles to determine a range of statistics for the atmospheric features considered. This approach obviates the types of bias normally introduced with traditional estimators. New spherical isotropic kernels with local support were introduced. Ln this paper the extension to spherical nonisotropic kernels with local support is introduced, together with a means of obtaining the shape and smoothing parameters in an objective way. The usefulness of spherical nonparametric estimators based on nonisotropic kernels is demonstrated with an application to an oceanographic feature-track ensemble.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification, tracking, and statistical analysis of tropical convective complexes using satellite imagery is explored in the context of identifying feature points suitable for tracking. The feature points are determined based on the shape of complexes using the distance transform technique. This approach has been applied to the determination feature points for tropical convective complexes identified in a time series of global cloud imagery. The feature points are used to track the complexes, and from the tracks statistical diagnostic fields are computed. This approach allows the nature and distribution of organized deep convection in the Tropics to be explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is essentially twofold: first, to describe the use of spherical nonparametric estimators for determining statistical diagnostic fields from ensembles of feature tracks on a global domain, and second, to report the application of these techniques to data derived from a modern general circulation model. New spherical kernel functions are introduced that are more efficiently computed than the traditional exponential kernels. The data-driven techniques of cross-validation to determine the amount elf smoothing objectively, and adaptive smoothing to vary the smoothing locally, are also considered. Also introduced are techniques for combining seasonal statistical distributions to produce longer-term statistical distributions. Although all calculations are performed globally, only the results for the Northern Hemisphere winter (December, January, February) and Southern Hemisphere winter (June, July, August) cyclonic activity are presented, discussed, and compared with previous studies. Overall, results for the two hemispheric winters are in good agreement with previous studies, both for model-based studies and observational studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Techniques used in a previous study of the objective identification and tracking of meteorological features in model data are extended to the unit sphere. An alternative feature detection scheme is described based on cubic interpolation for the sphere and local maximization. The extension of the tracking technique, used in the previous study, to the unit sphere is described. An example of the application of these techniques to a global relative vorticity field from a model integration are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent interest in the validation of general circulation models (GCMs) has been devoted to objective methods. A small number of authors have used the direct synoptic identification of phenomena together with a statistical analysis to perform the objective comparison between various datasets. This paper describes a general method for performing the synoptic identification of phenomena that can be used for an objective analysis of atmospheric, or oceanographic, datasets obtained from numerical models and remote sensing. Methods usually associated with image processing have been used to segment the scene and to identify suitable feature points to represent the phenomena of interest. This is performed for each time level. A technique from dynamic scene analysis is then used to link the feature points to form trajectories. The method is fully automatic and should be applicable to a wide range of geophysical fields. An example will be shown of results obtained from this method using data obtained from a run of the Universities Global Atmospheric Modelling Project GCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved algorithm for the generation of gridded window brightness temperatures is presented. The primary data source is the International Satellite Cloud Climatology Project, level B3 data, covering the period from July 1983 to the present. The algorithm rakes window brightness, temperatures from multiple satellites, both geostationary and polar orbiting, which have already been navigated and normalized radiometrically to the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer, and generates 3-hourly global images on a 0.5 degrees by 0.5 degrees latitude-longitude grid. The gridding uses a hierarchical scheme based on spherical kernel estimators. As part of the gridding procedure, the geostationary data are corrected for limb effects using a simple empirical correction to the radiances, from which the corrected temperatures are computed. This is in addition to the application of satellite zenith angle weighting to downweight limb pixels in preference to nearer-nadir pixels. The polar orbiter data are windowed on the target time with temporal weighting to account for the noncontemporaneous nature of the data. Large regions of missing data are interpolated from adjacent processed images using a form of motion compensated interpolation based on the estimation of motion vectors using an hierarchical block matching scheme. Examples are shown of the various stages in the process. Also shown are examples of the usefulness of this type of data in GCM validation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from four recent reanalysis projects [ECMWF, NCEP-NCAR, NCEP - Department of Energy ( DOE), NASA] have been diagnosed at the scale of synoptic weather systems using an objective feature tracking method. The tracking statistics indicate that, overall, the reanalyses correspond very well in the Northern Hemisphere (NH) lower troposphere, although differences for the spatial distribution of mean intensities show that the ECMWF reanalysis is systematically stronger in the main storm track regions but weaker around major orographic features. A direct comparison of the track ensembles indicates a number of systems with a broad range of intensities that compare well among the reanalyses. In addition, a number of small-scale weak systems are found that have no correspondence among the reanalyses or that only correspond upon relaxing the matching criteria, indicating possible differences in location and/or temporal coherence. These are distributed throughout the storm tracks, particularly in the regions known for small-scale activity, such as secondary development regions and the Mediterranean. For the Southern Hemisphere (SH), agreement is found to be generally less consistent in the lower troposphere with significant differences in both track density and mean intensity. The systems that correspond between the various reanalyses are considerably reduced and those that do not match span a broad range of storm intensities. Relaxing the matching criteria indicates that there is a larger degree of uncertainty in both the location of systems and their intensities compared with the NH. At upper-tropospheric levels, significant differences in the level of activity occur between the ECMWF reanalysis and the other reanalyses in both the NH and SH winters. This occurs due to a lack of coherence in the apparent propagation of the systems in ERA15 and appears most acute above 500 hPa. This is probably due to the use of optimal interpolation data assimilation in ERA15. Also shown are results based on using the same techniques to diagnose the tropical easterly wave activity. Results indicate that the wave activity is sensitive not only to the resolution and assimilation methods used but also to the model formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides for the first time an objective short-term (8 yr) climatology of African convective weather systems based on satellite imagery. Eight years of infrared International Satellite Cloud Climatology Project-European Space Agency's Meteorological Satellite (ISCCP-Meteosat) satellite imagery has been analyzed using objective feature identification, tracking, and statistical techniques for the July, August, and September periods and the region of Africa and the adjacent Atlantic ocean. This allows various diagnostics to be computed and used to study the distribution of mesoscale and synoptic-scale convective weather systems from mesoscale cloud clusters and squall lines to tropical cyclones. An 8-yr seasonal climatology (1983-90) and the seasonal cycle of this convective activity are presented and discussed. Also discussed is the dependence of organized convection for this region, on the orography, convective, and potential instability and vertical wind shear using European Centre for Medium-Range Weather Forecasts reanalysis data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to explore the use of both an Eulerian and system-centered method of storm track diagnosis applied to a wide range of meteorological fields at multiple levels to provide a range of perspectives on the Northern Hemisphere winter transient motions and to give new insight into the storm track organization and behavior. The data used are primarily from the European Centre for Medium-Range Weather Forecasts reanalyses project extended with operational analyses to the period 1979-2000. This is supplemented by data from the National Centers for Environmental Prediction and Goddard Earth Observing System 1 reanalyses. The range of fields explored include the usual mean sea level pressure and the lower- and upper-tropospheric height, meridional wind, vorticity, and temperature, as well as the potential vorticity (PV) on a 330-K isentropic surface (PV330) and potential temperature on a PV = 2 PVU surface (theta(PV2)). As well as reporting the primary analysis based on feature tracking, the standard Eulerian 2-6-day bandpass filtered variance analysis is also reported and contrasted with the tracking diagnostics. To enable the feature points to be identified as extrema for all the chosen fields, a planetary wave background structure is removed at each data time. The bandpass filtered variance derived from the different fields yield a rich picture of the nature and comparative magnitudes of the North Pacific and Atlantic storm tracks, and of the Siberian and Mediterranean candidates for storm tracks. The feature tracking allows the cyclonic and anticyclonic activities to be considered seperately. The analysis indicates that anticyclonic features are generally much weaker with less coherence than the cyclonic systems. Cyclones and features associated with them are shown to have much greater coherence and give tracking diagnostics that create a vivid storm track picture that includes the aspects highlighted by the variances as well as highlighting aspects that are not readily available from Eulerian studies. In particular, the upper-tropospheric features as shown by negative theta(PV2), for example, occur in a band spiraling around the hemisphere from the subtropical North Atlantic eastward to the high latitudes of the same ocean basin. Lower-troposphere storm tracks occupy more limited longitudinal sectors, with many of the individual storms possibly triggered from the upper-tropospheric disturbances in the spiral band of activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monsoon depressions that form over India during the summer are analyzed using simulations from the Laboratoire de Meteorologie Dynamique general circulation model. This type of synoptic system often occurs with a frequency of one to two per month and can produce a strong Indian rainfall. Two kinds of analyses are conducted in this study. The first one is a subjective analysis based on the evolution of the precipitation rate and the pattern of the sea level pressure. The second one is an objective analysis performed using the TRACK program, which identifies and tracks the minima in the sea level pressure anomaly held and computes the statistics for the distribution of systems. The analysis of a 9-yr control run, which simulates strong precipitation rates over the foothills of the Himalayas and over southern India but weak rates over central India, shows that the number of disturbances is coo low and that they almost never occur during August, when break conditions prevail. The generated disturbances more often move north, toward the foothills of the Himalayas. Another analysis is performed to study the effect of the Tibetan Plateau elevation on these disturbances with a 9-yr run carried out with a Tibetan Plateau at 50% of its current height. It is shown that this later integration simulates more frequent monsoon disturbances, which move rather northwestward, in agreement with the current observations. The comparison between the two runs shows that the June-July-August rainfall difference is in large part due to changes in the occurrence of the monsoon disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The representation of the diurnal cycle in the Hadley Centre climate model is evaluated using simulations of the infrared radiances observed by Meteosat 7. In both the window and water vapour channels, the standard version of the model with 19 levels produces a good simulation of the geographical distributions of the mean radiances and of the amplitude of the diurnal cycle. Increasing the vertical resolution to 30 levels leads to further improvements in the mean fields. The timing of the maximum and minimum radiances reveals significant model errors, however, which are sensitive to the frequency with which the radiation scheme is called. In most regions, these errors are consistent with well documented errors in the timing of convective precipitation, which peaks before noon in the model, in contrast to the observed peak in the late afternoon or evening. When the radiation scheme is called every model time step (half an hour), as opposed to every three hours in the standard version, the timing of the minimum radiance is improved for convective regions over central Africa, due to the creation of upper-level layer-cloud by detrainment from the convection scheme, which persists well after the convection itself has dissipated. However, this produces a decoupling between the timing of the diurnal cycles of precipitation and window channel radiance. The possibility is raised that a similar decoupling may occur in reality and the implications of this for the retrieval of the diurnal cycle of precipitation from infrared radiances are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automatic tracking of vorticity centers in European Centre for Medium-Range Weather Forecasts analyses has been used to develop a 20-yr climatology of African easterly wave activity. The tracking statistics at 600 and 850 mb confirm the complicated easterly wave structures present over the African continent. The rainy zone equatorward of 15 degreesN is dominated by 600-mb activity, and the much drier Saharan region poleward of 15 degreesN is more dominated by 850-mb activity. Over the Atlantic Ocean there is just one storm track with the 600- and 850-mb wave activity collocated. Based on growth/decay and genesis statistics, it appears that the 850-mb waves poleward of 15 degreesN over land generally do not get involved with the equatorward storm track over the ocean. Instead, there appears to be significant development of 850-mb activity at the West African coast in the rainy zone around (10 degreesN, 10 degreesW), which, it is proposed, is associated with latent heat release. Based on the tracking statistics, it has been shown that there is marked interannual variability in African easterly wave (AEW) activity. It is especially marked at the 850-mb level at the West African coast between about 10 degrees and 15 degreesN, where the coefficient of variation is 0.29. For the period between 1985 and 1998, a notable positive correlation is seen between this AEW activity and Atlantic tropical cyclone activity. This correlation is particularly strong for the postreanalysis period between 1994 and 1998. This result suggests that Atlantic tropical cyclone activity may be influenced by the number of AEWs leaving the West African coast, which have significant low-level amplitudes, and not simply by the total number of AEWs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AEA Technology has provided an assessment of the probability of α-mode containment failure for the Sizewell B PWR. After a preliminary review of the methodologies available it was decided to use the probabilistic approach described in the paper, based on an extension of the methodology developed by Theofanous et al. (Nucl. Sci. Eng. 97 (1987) 259–325). The input to the assessment is 12 probability distributions; the bases for the quantification of these distributions are discussed. The α-mode assessment performed for the Sizewell B PWR has demonstrated the practicality of the event-tree method with input data represented by probability distributions. The assessment itself has drawn attention to a number of topics, which may be plant and sequence dependent, and has indicated the importance of melt relocation scenarios. The α-mode failure probability following an accident that leads to core melt relocation to the lower head for the Sizewell B PWR has been assessed as a few parts in 10 000, on the basis of current information. This assessment has been the first to consider elevated pressures (6 MPa and 15 MPa) besides atmospheric pressure, but the results suggest only a modest sensitivity to system pressure.