32 resultados para zygomatic implants
Resumo:
Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm), human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.
Resumo:
Regeneration of periodontal tissues aims to utilize tissue engineering techniques to restore lost periodontal tissues including the cementum, periodontal ligament and alveolar bone. Regenerative dentistry and its special field regenerative periodontology represent relatively new and emerging branches of translational stem cell biology and regenerative medicine focusing on replacing and regenerating dental tissues to restore or re-establish their normal function lost during degenerative diseases or acute lesions. The regeneration itself can be achieved through transplantation of autologous or allogenic stem cells, or by improving the tissue self-repair mechanisms (e.g. by application of growth factors). In addition, a combination of stem cells or stem cell-containing tissue with bone implants can be used to improve tissue integration and the clinical outcome. As the oral cavity represents a complex system consisting of teeth, bone, soft tissues and sensory nerves, regenerative periodontology relies on the use of stem cells with relatively high developmental potential. Notably, the potential use of pluripotent stem cell types such as human embryonic stem cells or induced pluripotent stem cells is still aggravated by ethical and practical problems. Thus, other cellular sources such as those readily available in the postnatal craniofacial area and particularly in oral structures offer a much better and realistic alternative as cellular regenerative sources. In this review, we summarize current knowledge on the oral neural crest-derived stem cell populations (oNCSCs) and discuss their potential in regenerative periodontology.