55 resultados para yield estimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Threshold Error Correction Models are used to analyse the term structure of interest Rates. The paper develops and uses a generalisation of existing models that encompasses both the Band and Equilibrium threshold models of [Balke and Fomby ((1997) Threshold cointegration. Int Econ Rev 38(3):627–645)] and estimates this model using a Bayesian approach. Evidence is found for threshold effects in pairs of longer rates but not in pairs of short rates. The Band threshold model is supported in preference to the Equilibrium model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a modified conditional logit model that takes account of uncertainty associated with mis-reporting in revealed preference experiments estimating willingness-to-pay (WTP). Like Hausman et al. [Journal of Econometrics (1988) Vol. 87, pp. 239-269], our model captures the extent and direction of uncertainty by respondents. Using a Bayesian methodology, we apply our model to a choice modelling (CM) data set examining UK consumer preferences for non-pesticide food. We compare the results of our model with the Hausman model. WTP estimates are produced for different groups of consumers and we find that modified estimates of WTP, that take account of mis-reporting, are substantially revised downwards. We find a significant proportion of respondents mis-reporting in favour of the non-pesticide option. Finally, with this data set, Bayes factors suggest that our model is preferred to the Hausman model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the mixed logit (ML) using Bayesian methods was employed to examine willingness-to-pay (WTP) to consume bread produced with reduced levels of pesticides so as to ameliorate environmental quality, from data generated by a choice experiment. Model comparison used the marginal likelihood, which is preferable for Bayesian model comparison and testing. Models containing constant and random parameters for a number of distributions were considered, along with models in ‘preference space’ and ‘WTP space’ as well as those allowing for misreporting. We found: strong support for the ML estimated in WTP space; little support for fixing the price coefficient a common practice advocated and adopted in the environmental economics literature; and, weak evidence for misreporting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to improve the prediction of the quantity and type of Volatile Fatty Acids (VFA) produced from fermented substrate in the rumen of lactating cows. A model was formulated that describes the conversion of substrate (soluble carbohydrates, starch, hemi-cellulose, cellulose, and protein) into VFA (acetate, propionate, butyrate, and other VFA). Inputs to the model were observed rates of true rumen digestion of substrates, whereas outputs were observed molar proportions of VFA in rumen fluid. A literature survey generated data of 182 diets (96 roughage and 86 concentrate diets). Coefficient values that define the conversion of a specific substrate into VFA were estimated meta-analytically by regression of the model against observed VFA molar proportions using non-linear regression techniques. Coefficient estimates significantly differed for acetate and propionate production in particular, between different types of substrate and between roughage and concentrate diets. Deviations of fitted from observed VFA molar proportions could be attributed to random error for 100%. In addition to regression against observed data, simulation studies were performed to investigate the potential of the estimation method. Fitted coefficient estimates from simulated data sets appeared accurate, as well as fitted rates of VFA production, although the model accounted for only a small fraction (maximally 45%) of the variation in VFA molar proportions. The simulation results showed that the latter result was merely a consequence of the statistical analysis chosen and should not be interpreted as an indication of inaccuracy of coefficient estimates. Deviations between fitted and observed values corresponded to those obtained in simulations. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of a large-scale survey of resource-poor smallholder cotton farmers in South Africa over three years conclusively show that adopters of Bt cotton have benefited in terms of higher yields, lower pesticide use, less labour for pesticide application and substantially higher gross margins per hectare. These benefits were clearly related to the technology, and not to preferential adoption by farmers who were already highly efficient. The smallest producers are shown to have benefited from adoption of the Bt variety as much as, if not more than, larger producers. Moreover, evidence from hospital records suggests a link between declining pesticide poisonings and adoption of the Bt variety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to establish relationships between maize yield and rainfall on different temporal and spatial scales, in order to provide a basis for crop monitoring and modelling. A 16-year series of maize yield and daily rainfall from 11 municipalities and micro-regions of Rio Grande do Sul State was used. Correlation and regression analyses were used to determine associations between crop yield and rainfall for the entire crop cycle, from tasseling to 30 days after, and from 5 days before tasseling to 40 days after. Close relationships between maize yield and rainfall were found, particularly during the reproductive period (45-day period comprising the flowering and grain filling). Relationships were closer on a regional scale than at smaller scales. Implications of the crop-rainfall relationships for crop modelling are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reanalysis data provide an excellent test bed for impacts prediction systems. because they represent an upper limit on the skill of climate models. Indian groundnut (Arachis hypogaea L.) yields have been simulated using the General Large-Area Model (GLAM) for annual crops and the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40). The ability of ERA-40 to represent the Indian summer monsoon has been examined. The ability of GLAM. when driven with daily ERA-40 data, to model both observed yields and observed relationships between subseasonal weather and yield has been assessed. Mean yields "were simulated well across much of India. Correlations between observed and modeled yields, where these are significant. are comparable to correlations between observed yields and ERA-40 rainfall. Uncertainties due to the input planting window, crop duration, and weather data have been examined. A reduction in the root-mean-square error of simulated yields was achieved by applying bias correction techniques to the precipitation. The stability of the relationship between weather and yield over time has been examined. Weather-yield correlations vary on decadal time scales. and this has direct implications for the accuracy of yield simulations. Analysis of the skewness of both detrended yields and precipitation suggest that nonclimatic factors are partly responsible for this nonstationarity. Evidence from other studies, including data on cereal and pulse yields, indicates that this result is not particular to groundnut yield. The detection and modeling of nonstationary weather-yield relationships emerges from this study as an important part of the process of understanding and predicting the impacts of climate variability and change on crop yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (lambda, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of lambda near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil moisture and soil temperature affect pre-harvest infection with Aspergillus flavus and production of aflatoxin. The objectives of our field research in Niger, West Africa, were to: (i) examine the effects of sowing date and irrigation treatments on pod yield, infection with A. flavus and aflatoxin concentration; and (ii) to quantify relations between infection, aflatoxin concentration and soil moisture stress. Seed of an aflatoxin susceptible peanut cv. JL24 was sown at two to four different sowing dates under four irrigation treatments (rainfed and irrigation at 7, 14 and 21 days intervals) between 1991 and 1994, giving 40 different 'environments'. Average air and soil temperatures of 28-34 degrees C were favourable for aflatoxin contamination. CROPGRO-peanut model was used to simulate the occurrence of moisture stress. The model was able to simulate yields of peanut well over the 40 environments (r(2) = 0.67). In general, early sowing produced greater pod yields, as well as less infection and lower aflatoxin concentration. There were negative linear relations between infection (r(2) = 0.62) and the average simulated fraction of extractable soil water (FESW) between flowering and harvest, and between aflatoxin concentration (r(2) = 0.54) and FESW in the last 25 days of pod-filling. This field study confirms that infection and aflatoxin concentration in peanut can be related to the occurrence of soil moisture stress during pod-filling when soil temperatures are near optimal for A. flavus. These relations could form the basis of a decision-support system to predict the risk of aflatoxin contamination in peanuts in similar environments. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).