96 resultados para weed ecology
Resumo:
Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton-sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0-15 and 15-30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0-15 and 15-30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus-galli seeds in the 15-30 cm soil horizon compared with the other tillage regimes. Total seedbank (0-30 cm) of P. oleracea was significantly reduced in cotton-sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus-galli. Total seed densities of most annual broad-leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus-galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring-germinating grass weed species, but also prevents establishment of summer-germinating weed species by the early developing crop canopy.
Resumo:
1. To understand population dynamics in stressed environments it is necessary to join together two classical lines of research. Population responses to environmental stress have been studied at low density in life table response experiments. These show how the population's growth rate (pgr) at low density varies in relation to levels of stress. Population responses to density, on the other hand, are based on examination of the relationship between pgr and population density. 2. The joint effects of stress and density on pgr can be pictured as a contour map in which pgr varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. Here a microcosm experiment is reported that compared the joint effects of zinc and population density on the pgr of the springtail Folsomia candida (Collembola). 3. Our experiments allowed the plotting of a complete map of the effects of density and a stressor on pgr. Particularly important was the position of the pgr= 0 contour, which suggested that carrying capacity varied little with zinc concentration until toxic levels were reached. 4. This prediction accords well with observations of population abundance in the field. The method also allowed us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence. 5. The mechanisms responsible for these phenomena are discussed. As zinc is an essential trace element the initial increase in pgr is probably a consequence of dietary zinc deficiency. The Allee effect may be attributed to productivity of the environment increasing with density at low density. Density dependence is a result of food limitation. 6. Synthesis and applications. We illustrate a novel solution based on mapping a population's growth rate in relation to stress and population density. Our method allows us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence in an important ecological indicator species. We hope that the approach followed here will prove to have general applicability enabling predictions of field abundance to be made from estimates of the joint effects of the stressors and density on population growth rate.
Resumo:
Seed predation by avian and non-avian predators was quantified in the boundaries and cropped areas of cereal fields by presenting known quantities of seed with and without exclusion cages. Predator encounter-rates with the dishes exceeded 99%. Birds removed on average 6.7% seed from the dishes during the seven-day trials compared to 51% by non-avian predators. A comparison was made of the causal factors responsible for predation of Avena fatua, Chenopodium album and Cirsium arvense seeds. A. fatua seeds were preyed most heavily by both avian and non-avian predators. Seed removal by birds was greater in the cropped area than in the field boundary, non-avian predators being generally more active in the field boundary. Seed predation by birds was greater in spring than in any other season, whilst losses to other animals were greater during autumn and winter. Although, birds were not the main seed predators in cereal fields, they may contribute to weed seed depletion, of relevance to reduced-input farming systems where herbicides use is restricted.
Resumo:
The influence of sedimentation, depth and substratum angle on sponge assemblages in the Wakatobi region, south-eastern Sulawesi, Indonesia was considered. Sponge assemblages were sampled from two reef localities. The first reef (Sampela) was highly impacted by high sedimentation rates with fine sediment particles that settle slowly, while the second (Hoga) experienced only fast settling coarse sediment with lower overall sedimentation rates. Sponge assemblages were sampled (area occupied and numbers) on the reef fiat (0 m) and at 5 (reef crest), 10 and 15 m (15 m at Hoga only). Some significant (P < 0.001) differences were observed in the area occupied and the number of sponge patches between surface angles and sites. Significantly lower (t > 4.61, df = 9, P < 0.001) sponge numbers, percentage cover and richness were associated with the reef flat at both sites compared with all other depths at each site, with the exception of abundance of sponges on the reef flat at Sampela, which was much greater than at any other depth sampled. Species richness increased with depth at both sites but differences between surface angles were only recorded at Sampela, with higher species richness being found on vertical, inclined and horizontal surfaces respectively A total of 100 sponge species (total area sampled 52.5 m(2)) was reported from the two sites, with 58 species found at Sampela and 71 species at Hoga (41% of species shared). Multi-dimensional scaling (MDS) indicated differences in assemblage structure between sites and most depth intervals, but not substratum angles. A number of biological (e.g. competition and predation) and physical (e.g. sedimentation and aerial exposure) factors were considered to control sponge abundance and richness. Unexpectedly a significant (F-1,F-169 = 148.98, P < 0.001) positive linear relationship was found between sponge density and area occupied. In areas of high sponge coverage, the number of patches was also high, possibly due to fragmentation of large sponges produced as a result of predation and physical disturbance. The MDS results were also the same whether sponge numbers or percentage cover estimates were used, suggesting that although these different approaches yield different sorts of information, the same assemblage structure can be identified.
Resumo:
The effects of intraspecific and interspecific competition on a wide range of winter wheat cultivars were investigated in two consecutive split plot field experiments. Significant reductions of grain yield at greatly reduced seed rates were observed in the first experiment, whereas increasing crop density up to 380 plants m(-2) in the second experiment failed to produce a significant yield response due to compensation through increased ears and grains per plant at lower crop densities. Appreciable weed suppression and acceptable grain yield can be achieved at crop densities between 150 and 270 plants m(-2). Reductions in final yield due to weed competition occurred in both experiments; 11.7 and 13.6% for the first and second experiment, respectively, with the onset of weed competition occurring from tittering in the first experiment and from stem elongation in the second. The possibility of enhancing crop competitiveness for weed suppression and improved grain yield is discussed.
Resumo:
A field experiment was conducted in the low country of Sri Lanka, during the period 1994–1995 to investigate the severity of weed infestation and tea growth in relation to weed management methods in newly established tea (Camellia sinensis[L.] Kuntze). Manual weeding (hand and slash weeding) at various intervals was compared with various herbicides, with or without mulching. Weed control with herbicides was superior to that of hand weeding at 6-week intervals or more. Weed control with oxyfluorfen at 0.29 kg ai ha−1 + paraquat at 0.17 kg ai ha−1 or glyphosate at 0.99 kg ai ha−1 + kaolin at 3.42 kg ha−1 were superior. Plots unweeded for 12 weeks or more produced significantly greater (P < 0.05) weed biomass than plots unweeded for 6 weeks. Although the least weed dry weight (P < 0.05) and the greatest number of weed species were recorded with hand weeding at 2 week intervals, there was no particular benefit on tea growth when compared with hand weeding at 6 and 12 week intervals. Inter row mulching in chemically treated plots was more favorable for tea growth than no mulching, while living weed cover in unmulched slash weeded plots suppressed tea growth. A combination of mulching and herbicides, particularly oxyfluorfen and paraquat, followed by hand weeding at least every 6–8 weeks was considered the most appropriate weed management system for young tea.
Resumo:
Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with. re and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover-cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.