91 resultados para voluntary demand
Resumo:
The orthodox approach for incentivising Demand Side Participation (DSP) programs is that utility losses from capital, installation and planning costs should be recovered under financial incentive mechanisms which aim to ensure that utilities have the right incentives to implement DSP activities. The recent national smart metering roll-out in the UK implies that this approach needs to be reassessed since utilities will recover the capital costs associated with DSP technology through bills. This paper introduces a reward and penalty mechanism focusing on residential users. DSP planning costs are recovered through payments from those consumers who do not react to peak signals. Those consumers who do react are rewarded by paying lower bills. Because real-time incentives to residential consumers tend to fail due to the negligible amounts associated with net gains (and losses) or individual users, in the proposed mechanism the regulator determines benchmarks which are matched against responses to signals and caps the level of rewards/penalties to avoid market distortions. The paper presents an overview of existing financial incentive mechanisms for DSP; introduces the reward/penalty mechanism aimed at fostering DSP under the hypothesis of smart metering roll-out; considers the costs faced by utilities for DSP programs; assesses linear rate effects and value changes; introduces compensatory weights for those consumers who have physical or financial impediments; and shows findings based on simulation runs on three discrete levels of elasticity.
Resumo:
The peak congestion of the European grid may create significant impacts on system costs because of the need for higher marginal cost generation, higher cost system balancing and increasing grid reinforcement investment. The use of time of use rates, incentives, real time pricing and other programmes, usually defined as Demand Side Management (DSM), could bring about significant reductions in prices, limit carbon emissions from dirty power plants, and improve the integration of renewable sources of energy. Unlike previous studies on elasticity of residential electricity demand under flat tariffs, the aim of this study is not to investigate the known relatively inelastic relationship between demand and prices. Rather, the aim is to assess how occupancy levels vary in different European countries. This reflects the reality of demand loads, which are predominantly determined by the timing of human activities (e.g. travelling to work, taking children to school) rather than prices. To this end, two types of occupancy elasticity are estimated: baseline occupancy elasticity and peak occupancy elasticity. These represent the intrinsic elasticity associated with human activities of single residential end-users in 15 European countries. This study makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; draw time use demand curves for video and TV watching activity; and estimate national occupancy elasticity levels of single-occupant households. Findings on occupancy elasticities provide an indication of possible DSM strategies based on occupancy levels and not prices.
Resumo:
Over the last few years, load growth, increases in intermittent generation, declining technology costs and increasing recognition of the importance of customer behaviour in energy markets have brought about a change in the focus of Demand Response (DR) in Europe. The long standing programmes involving large industries, through interruptible tariffs and time of day pricing, have been increasingly complemented by programmes aimed at commercial and residential customer groups. Developments in DR vary substantially across Europe reflecting national conditions and triggered by different sets of policies, programmes and implementation schemes. This paper examines experiences within European countries as well as at European Union (EU) level, with the aim of understanding which factors have facilitated or impeded advances in DR. It describes initiatives, studies and policies of various European countries, with in-depth case studies of the UK, Italy and Spain. It is concluded that while business programmes, technical and economic potentials vary across Europe, there are common reasons as to why coordinated DR policies have been slow to emerge. This is because of the limited knowledge on DR energy saving capacities; high cost estimates for DR technologies and infrastructures; and policies focused on creating the conditions for liberalising the EU energy markets.
Resumo:
This study presents the findings of applying a Discrete Demand Side Control (DDSC) approach to the space heating of two case study buildings. High and low tolerance scenarios are implemented on the space heating controller to assess the impact of DDSC upon buildings with different thermal capacitances, light-weight and heavy-weight construction. Space heating is provided by an electric heat pump powered from a wind turbine, with a back-up electrical network connection in the event of insufficient wind being available when a demand occurs. Findings highlight that thermal comfort is maintained within an acceptable range while the DDSC controller maintains the demand/supply balance. Whilst it is noted that energy demand increases slightly, as this is mostly supplied from the wind turbine, this is of little significance and hence a reduction in operating costs and carbon emissions is still attained.