170 resultados para vacuum driven storage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed of 15 species of Brassicaceae were stored hermetically in a genebank (at -5 degrees C to -10 degrees C with c. 3% moisture content) for 40 years. Samples were withdrawn at intervals for germination tests. Many accessions showed an increase in ability to germinate over this period. due to loss in dormancy. Nevertheless, some dormancy remained after 40 years' storage and was broken by pre-applied gibberellic acid. The poorest seed survival occurred in Hormatophylla spinosa. Even in this accession the ability to germinate declined by only 7% between 1966 and 2006. Comparison of seeds from 1966 stored for 40 years with those collected anew in 2006 from the original sampling sites, where possible, showed few differences, other than a tendency (7 of 9 accessions) for the latter to show greater dormancy. These results for hermetic storage at sub-zero temperatures and low moisture contents confirm that long-term seed storage can provide a successful technology for ex situ plant biodiversity conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suitability of cryopreservation for the secure, long-term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Wearied plantlets that were grown under glasshouse conditions exhibited no morphological variation from non-frozen controls. (C) 2003 Annals of Botany Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trade-offs have long been a major theme in life-history theory, but they have been hard to document. We introduce a new method that reveals patterns of divergent trade-offs after adjusting for the pervasive variation in rate of resource allocation to offspring as a function of body size and lifestyle. Results suggest that preweaning vulnerability to predation has been the major factor determining how female placental mammals allocate production between a few large and many small offspring within a litter and between a few large litters and many small ones within a reproductive season. Artiodactyls, perissodactyls, cetaceans, and pinnipeds, which give birth in the open on land or in the sea, produce a few large offspring, at infrequent intervals, because this increases their chances of escaping predation. Insectivores, fissiped carnivores, lagomorphs, and rodents, whose offspring are protected in burrows or nests, produce large litters of small newborns. Primates, bats, sloths, and anteaters, which carry their young from birth until weaning, produce litters of one or a few offspring because of the need to transport and care for them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthraquinone immobilised onto the surface of indigo microcrystals enhances the reductive dissolution of indigo to leuco-indigo. Indigo reduction is driven by glucose in aqueous NaOH and a vibrating gold disc electrode is employed to monitor the increasing leuco-indigo concentration with time. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular "wedge effect'' during co-intercalation of Na+ and anthraquinone into the layered indigo crystal structure. The glucose-driven indigo reduction, which is in effective in 0.1 M NaOH at 65 degrees C, becomes facile and goes to completion in the presence of anthraquinone catalyst. Electron microscopy of indigo crystals before and after reductive dissolution confirms a delamination mechanism initiated at the edges of the plate-like indigo crystals. Catalysis occurs when the anthraquinone-indigo mixture reaches a molar ratio of 1:400 (at 65 degrees C; corresponding to 3 mu M anthraquinone) with excess of anthraquinone having virtually no effect. A strong temperature effect ( with a composite E-A approximate to 120 kJ mol(-1)) is observed for the reductive dissolution in the presence of anthraquinone. The molar ratio and temperature effects are both consistent with the heterogeneous nature of the anthraquinone catalysis in the aqueous reaction mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proliferative kidney disease (PKD) is an emerging disease of salmonid fishes. It is provoked by temperature and caused by infective spores of the myxozoan parasite Tetracapsuloides bryosalmonae, which develops in freshwater bryozoans. We investigated the link between PKD and temperature by determining whether temperature influences the proliferation of T bryosalmonae in the bryozoan host Fredericella sultana. Herein we show that increased temperatures drive the proliferation of T bryosalmonae in bryozoans by provoking, accelerating and prolonging the production of infective spores from cryptic stages. Based on these results we predict that PKD outbreaks will increase further in magnitude and severity in wild and farmed salmonids as a result of climate-driven enhanced proliferation in invertebrate hosts, and urge for early implementation of management strategies to reduce future salmonid declines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. legumosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutants or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryopreservation using encapsulation-dehydration was developed for the long-term conservation of cocoa (Theobroma cacao L.) germplasm. Survival of individually encapsulated somatic embryos after desiccation and cryopreservation was achieved through optimization of cryoprotectants (abscisic acid (ABA) and sugar), duration of osmotic and evaporative dehydration, and embryo development stage. Up to 63% of the genotype SPA4 early-cotyledonary somatic embryos survived cryopreservation following 7 days preculture with 1 M sucrose and 4 h silica exposure (16% moisture content in bead). This optimized protocol was successfully applied to three other genotypes, e.g. EET272, IMC14 and AMAZ12, with recovery frequencies of 25, 40 and 72%, respectively (but the latter two genotypes using 0.75 M sucrose). Recovered SPA4 somatic embryos converted to plants at a rate of 33% and the regenerated plants were phenotypically comparable to non-cryopreserved somatic embryo-derived plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four races of Xanthomonas campestris pv. mal-vacearum (Xcm) viz. races 23, 27 and 32 (isolated from Gossypium hirsutum) and race 23b (from Gossypium barbadense) were studied. The plasmid profile of the natural isolates showed four plasmids in races 23 and 23b (ca. 60, 40, 23, 8.2 kb), five in race 27 (ca. 60, 40, 23, 8.2 and 3.7 kb) and six in race 32 (ca. 60, 40, 23, 8.2, 3.7 and 1.6 kb). Continuously sub-cultured laboratory isolates of the Xcm races resulted in the loss of all but two plasmids, ca. 60 and 40 kb in size. When the laboratory isolates were passed through cotton (Gossypium hirsutum), they regained certain plasmids so that four plasmids were found in race 23 and 23b (ca. 60, 40, 23 and 8.2 kb), five in race 27 (ca. 60, 40, 23, 8.2 and 3.7 kb) and six in race 32 (ca. 60, 40, 23, 8.2, 3.7 and 1.6 kb), which was more or less similar to the original isolates. The isolates recovered from cotton maintained their plasmid profile (except for minor changes in the miniplasmids) after storage for six months at -70degreesC in 50% glycerol. It is suggested that plasmid profiles among highly virulent races of Xcm are unstable during repeated sub-culturing at room temperature, resulting in rapid loss of some plasmids. However, when the cultures were sub-cultured and stored at -70degreesC the plasmid profile was fairly stable except for the miniplasmids (ca. 3.7 and 1.6 kb).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suitability of cryopreservation for the secure, long-term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Weaned plantlets that were grown under glasshouse conditions exhibited no morphological variation from non-frozen controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of the poly(ether sulfone) derived from 4,4'-biphenol and 4,4'-dichlorodiphenylsulfone (Radel-R(TM)) with its homologous macrocyclic oligomers show greatly lowered melt viscosities relative to that of the parent polymer, potentially enabling more facile production and fabrication of fiber-reinforced composite materials. The macrocycles can then undergo entropically driven ring-opening polymerization in situ. The required blends can be obtained easily in one step, by carrying out polycondensations at concentrations lower than those usually used for polymer synthesis.