67 resultados para systems of signs
Resumo:
Successful pest management is often hindered by the inherent complexity of the interactions of a pest with its environment. The use of genetically characterized model plants can allow investigation of chosen aspects of these interactions by limiting the number of variables during experimentation. However, it is important to study the generic nature of these model systems if the data generated are to be assessed in a wider context, for instance, with those systems of commercial significance. This study assesses the suitability of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) as a model host plant to investigate plant-herbivore-natural enemy interactions, with Plutella xylostella (L.) (Lepidoptera: Plutellidae), the diamondback moth, and Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a parasitoid of P. xylostella. The growth and development of P. xylostella and C. plutellae on an A. thaliana host plant (Columbia type) were compared to that on Brassica rapa var. pekinensis (L.) (Brassicaceae), a host crop that is widely cultivated and also commonly used as a laboratory host for P. xylostella rearing. The second part of the study investigated the potential effect of the different A. thaliana background lines, Columbia and Landsberg (used in wider scientific studies), on growth and development of P. xylostella and C. plutellae. Plutella xylostella life history parameters were found generally to be similar between the host plants investigated. However, C. plutellae were more affected by the differences in host plant. Fewer adult parasitoids resulted from development on A. thaliana compared to B. rapa, and those that did emerge were significantly smaller. Adult male C. plutellae developing on Columbia were also significantly smaller than those on Landsberg A. thaliana.
Resumo:
The Sardinian brook salamander, Euproctus platycephalus, is a cryptically coloured urodele found in streams, springs and pools in the main mountain systems of Sardinia, and is classified as critically endangered by IUCN. General reviews of the mountainous range where salamanders occur are numerous, but very few field-based distribution studies exist on this endemic species. Through a field and questionnaire survey, conducted between 1999 and 2001, we report a first attempt to increase data on the present distribution of E. platycephalus. A total of 14 localities where Sardinian salamanders are represented by apparently stable and in some cases abundant populations have been identified, as well as 30 sites where species presence has been recorded after 1991. Some 11 historical sites were identified which are no longer inhabited by the species. The implications of this distributional study for the conservation of the species and for the realization of an updated atlas are discussed.
Resumo:
A series of heterometal substituted gallium phosphates, (N2C4H7)(0.5+x)[Me0.5+xGa2.5-x(PO4)(3)] (Me = Mn, Fe, Co and Zn, x approximate to 0.25), has been synthesised under solvothermal conditions at 433 K in ethylene glycol using I-methylimidazole as a templating agent and their structures determined at 150 K using single-crystal X-ray diffraction. The compounds are isostructural, crystallising in the monoclinic space group C 2/c, with lattice parameters ca. 15 x 13 x 15 angstrom and beta = 112 degrees, and adopt the laumontite framework type (LAU). The incorporation of 1-methylimidazole cations into the one-dimensional pore systems of these materials is about three quarters the uptake value obtained previously for the less-bulky amine cations of imidazole and pyridine in other MeGaPO laumontites, which have the formula (TH)[MeGa2(PO4)(3)] (Me = Mn, Fe, Co and Zn; T = C5H5N and C3N2H4). The size, shape and charge of the amine clearly influence both the metal-phosphate framework stoichiometry (i.e. Me2+:Ga3+ ratio) and the framework charge. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The interactions of bovine serum albumin (BSA) with three ethylene oxide/butylene oxide (E/B) copolymers having different block lengths and varying molecular architectures is examined in this study in aqueous solutions. Dynamic light scattering (DLS) indicates the absence of BSA-polymer binding in micellar systems of copolymers with lengthy hydrophilic blocks. On the contrary, stable protein-polyrner aggregates were observed in the case of E18B10 block copolymer. Results from DLS and SAXS suggest the dissociation of E/B copolymer micelles in the presence of protein and the absorption of polymer chains to BSA surface. At high protein loadings, bound BSA adopts a more compact conformation in solution. The secondary structure of the protein remains essentially unaffected even at high polymer concentrations. Raman spectroscopy was used to give insight to the configurations of the bound molecules in concentrated solutions. In the vicinity of the critical gel concentration of E18B10 introduction of BSA can dramatically modify the phase diagram, inducing a gel-sol-gel transition. The overall picture of the interaction diagram of the E18B10-BSA reflects the shrinkage of the suspended particles due to destabilization of micelles induced by BSA and the gelator nature of the globular protein. SAXS and rheology were used to further characterize the structure and flow behavior of the polymer-protein hybrid gels and sols.
Resumo:
During the last 15 years, a series of food scares and crises (BSE, dioxin. foot and mouth disease) have seriously under-mined public confidence in food producers and operators and their capacity to produce safe food. As a result, food safety has become a top priority of the European legislative authorities and systems of national food control have been tightened up and have included the establishment of the European Food Safety Authority. In Greece a law creating the Hellenic Food Safety Authority has been approved. The main objectives of this Authority are to promote the food security to consumers and inform them of any changes or any development in the food and health sector. The paper reviews the general structure of the current food control system in Greece. It describes the structure and the mission of the Hellenic Food Safety Authority and explains the strategy to carry out inspections and the analysis of the preliminary results of such inspections. Details are also given of the personnel training and certification and accreditation standards to be met by the Authority by the end of 2004. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Following a number of major food safety problems in Europe, including in particular the issues of BSE and dioxin, consumers have become increasingly concerned about food safety. This has led authorities in Europe to revise their systems of food control. The establishment of the European Food Safety Authority (EFSA) is one of the main structural changes made at the moment within the European Union, and similar action at national level has been or is being taken by many EU member states. In Spain a law creating the Spanish Agency of Food Safety has been approved. This has general objectives that include the promotion of food security and offering guarantees and the provision of objective information to consumers and food businesses in the Spanish agrifood sector. This paper reviews the general structure of the current food control system in Spain. At a national level this involves three different Ministries. Spain however also has a devolved system involving Autonomous Communities the paper considers Castilla y Leon as an example. In conclusion the paper recognises that Spain has a complex system for food control. and considers that it will take time before a full evaluation of the new system is possible. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.
Resumo:
We describe and implement a fully discrete spectral method for the numerical solution of a class of non-linear, dispersive systems of Boussinesq type, modelling two-way propagation of long water waves of small amplitude in a channel. For three particular systems, we investigate properties of the numerically computed solutions; in particular we study the generation and interaction of approximate solitary waves.
Resumo:
We investigate the spectrum of certain integro-differential-delay equations (IDDEs) which arise naturally within spatially distributed, nonlocal, pattern formation problems. Our approach is based on the reformulation of the relevant dispersion relations with the use of the Lambert function. As a particular application of this approach, we consider the case of the Amari delay neural field equation which describes the local activity of a population of neurons taking into consideration the finite propagation speed of the electric signal. We show that if the kernel appearing in this equation is symmetric around some point a= 0 or consists of a sum of such terms, then the relevant dispersion relation yields spectra with an infinite number of branches, as opposed to finite sets of eigenvalues considered in previous works. Also, in earlier works the focus has been on the most rightward part of the spectrum and the possibility of an instability driven pattern formation. Here, we numerically survey the structure of the entire spectra and argue that a detailed knowledge of this structure is important within neurodynamical applications. Indeed, the Amari IDDE acts as a filter with the ability to recognise and respond whenever it is excited in such a way so as to resonate with one of its rightward modes, thereby amplifying such inputs and dampening others. Finally, we discuss how these results can be generalised to the case of systems of IDDEs.
Resumo:
This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.
Resumo:
Novel macrocyclic receptors which bind electron-donor aromatic substrates via π-stacking donor- acceptor interactions are obtained by cyclo-imidization of an amine-functionalized arylether-sulfone with pyromellitic- and 1,4,5,8-naphthalene-tetracarboxylic dianhydrides. These macrocycles complex with a wide variety of π-donor substrates including tetrathiafulvalene, naphthalene, anthracene, pyrene, perylene, and functional derivatives of these polycyclic hydrocarbons. The resulting supramolecular assemblies range from simple 1:1 complexes, to [2]- and [3]-pseudorotaxanes, and even (as a result of crystallographic disorder) an apparent polyrotaxane. Direct, five-component self-assembly of a metal-centred [3]pseudorotaxane is also observed, on complexation of a macrocyclic ether-imide with 8-hydroxyquinoline in the presence of palladium(II) ions. Binding studies in solution were carried out by 1H NMR and UV-visible spectroscopy, and the stoichiometries of binding were confirmed by Job plots based on charge-transfer absorption bands. The highest association constants are found for strong π-donor guests with large surface-areas, notably perylene and 1-hydroxypyrene, for which Ka values of 1.4 x 103 and 2.3 x 103 M-1 respectively are found. Single crystal X-ray analyses of the receptors and their derived complexes reveal large, induced-fit distortions of the macrocyclic frameworks as a result of complexation. These structures provide compelling evidence for the existence of strong, attractive forces between the electronically-complementary aromatic π-systems of host and guest.
Resumo:
We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.
Resumo:
Commercial mango production in Ghana is a relatively young industry faced with several pest problems including the mango stone weevil, Sternochetus mangiferae (F.). There is an urgent need to control this and other pests to facilitate access to the international export market for fresh mango fruits. A literature survey identifies stone weevil control tactics in the areas of host plant resistance, administrative and legislative controls, use of pesticides, biological control, cultural control and quarantine and phytosanitary measures that have been developed in other mango-producing areas. We assess these pest management approaches for their relevance to Ghana and West Africa, with emphasis on the research required for their appropriate, effective and sustainable use in the systems of mango production of the West African sub-region. The importance of processing and value addition technologies, as a means of circumventing the quarantine hurdles of S. mangiferae, is highlighted.
Resumo:
The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for interpreting past changes in Mediterranean climate and the civilizations it has supported over the last 12 000 years (broadly the Holocene period). This paper presents a discussion of how changes in climate forcing (e.g. orbital variations, greenhouse gases, ice sheet cover) may have impacted on the ‘basic ingredients’ controlling the mid-latitude storm tracks over the North Atlantic and the Mediterranean on intermillennial time scales. Idealized simulations using the HadAM3 atmospheric general circulation model (GCM) are used to explore the basic processes, while a series of timeslice simulations from a similar atmospheric GCM coupled to a thermodynamic slab ocean (HadSM3) are examined to identify the impact these drivers have on the storm track during the Holocene. The results suggest that the North Atlantic storm track has moved northward and strengthened with time since the Early to Mid-Holocene. In contrast, the Mediterranean storm track may have weakened over the same period. It is, however, emphasized that much remains still to be understood about the evolution of the North Atlantic and Mediterranean storm tracks during the Holocene period.
Resumo:
An increasing importance is assigned to the estimation and verification of carbon stocks in forests. Forestry practice has several long-established and reliable methods for the assessment of aboveground biomass; however we still miss accurate predictors of belowground biomass. A major windthrow event exposing the coarse root systems of Norway spruce trees allowed us to assess the effects of contrasting soil stone and water content on belowground allocation. Increasing stone content decreases root/shoot ratio, while soil waterlogging leads to an increase in this ratio. We constructed allometric relationships for belowground biomass prediction and were able to show that only soil waterlogging significantly impacts model parameters. We showed that diameter at breast height is a reliable predictor of belowground biomass and, once site-specific parameters have been developed, it is possible to accurately estimate belowground biomass in Norway spruce.