33 resultados para storage and retrieval process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The artificial grammar (AG) learning literature (see, e.g., Mathews et al., 1989; Reber, 1967) has relied heavily on a single measure of implicitly acquired knowledge. Recent work comparing this measure (string classification) with a more indirect measure in which participants make liking ratings of novel stimuli (e.g., Manza & Bornstein, 1995; Newell & Bright, 2001) has shown that string classification (which we argue can be thought of as an explicit, rather than an implicit, measure of memory) gives rise to more explicit knowledge of the grammatical structure in learning strings and is more resilient to changes in surface features and processing between encoding and retrieval. We report data from two experiments that extend these findings. In Experiment 1, we showed that a divided attention manipulation (at retrieval) interfered with explicit retrieval of AG knowledge but did not interfere with implicit retrieval. In Experiment 2, we showed that forcing participants to respond within a very tight deadline resulted in the same asymmetric interference pattern between the tasks. In both experiments, we also showed that the type of information being retrieved influenced whether interference was observed. The results are discussed in terms of the relatively automatic nature of implicit retrieval and also with respect to the differences between analytic and nonanalytic processing (Whittlesea Price, 2001).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We summarise the work of an interdisciplinary network set up to explore the impacts of climate change in the British Uplands. In this CR Special, the contributors present the state of knowledge and this introduction synthesises this knowledge and derives implications for decision makers. The Uplands are valued semi-natural habitats, providing ecosystem services that have historically been taken for granted. For example, peat soils, which are mostly found in the Uplands, contain around 50% of the terrestrial carbon in the UK. Land management continues to be a driver of ecosystem service delivery. Degraded and managed peatlands are subject to erosion and carbon loss with negative impacts on biodiversity, carbon storage and water quality. Climate change is already being experienced in British Uplands and is likely to exacerbate these pressures. Climate envelope models suggest as much as 50% of British Uplands and peatlands will be exposed to climate stress by the end of the 21st century under low and high emissions scenarios. However, process-based models of the response of organic soils to this climate stress do not give a consistent indication of what this will mean for soil carbon: results range from a very slight increase in uptake, through a clear decline, to a net carbon loss. Preserving existing peat stocks is an important climate mitigation strategy, even if new peat stops forming. Preserving upland vegetation cover is a key win–win management strategy that will reduce erosion and loss of soil carbon, and protect a variety of services such as the continued delivery of a high quality water resource.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undeniably, anticipation plays a crucial role in cognition. By what means, to what extent, and what it achieves remain open questions. In a recent BBS target article, Clark (in press) depicts an integrative model of the brain that builds on hierarchical Bayesian models of neural processing (Rao and Ballard, 1999; Friston, 2005; Brown et al., 2011), and their most recent formulation using the free-energy principle borrowed from thermodynamics (Feldman and Friston, 2010; Friston, 2010; Friston et al., 2010). Hierarchical generative models of cognition, such as those described by Clark, presuppose the manipulation of representations and internal models of the world, in as much detail as is perceptually available. Perhaps surprisingly, Clark acknowledges the existence of a “virtual version of the sensory data” (p. 4), but with no reference to some of the historical debates that shaped cognitive science, related to the storage, manipulation, and retrieval of representations in a cognitive system (Shanahan, 1997), or accounting for the emergence of intentionality within such a system (Searle, 1980; Preston and Bishop, 2002). Instead of demonstrating how this Bayesian framework responds to these foundational questions, Clark describes the structure and the functional properties of an action-oriented, multi-level system that is meant to combine perception, learning, and experience (Niedenthal, 2007).