32 resultados para statistic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Greater self-complexity has been suggested as a protective factor for people under stress (Linville, 1985). Two different measures have been proposed to assess individual self-complexity: Attneave’s H statistic (1959) and a composite index of two components of self-complexity (SC; Rafaeli-Mor et al., 1999). Using mood-incongruent recall, i.e., recalling positive events while in negative mood, the present study compared validity of the two measures through reanalysis of Sakaki’s (2004) data. Results indicated that H statistic did not predict performance of mood-incongruent recall. In contrast, greater SC was associated with better mood-incongruent recall even when the effect of H statistic was controlled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.