37 resultados para spin probe
Resumo:
We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface. On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures. We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement of the defect cores and estimate their diffusion constants.
Resumo:
The metal–insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (a) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12:5% 6 a 6 20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that a ¼ 10% is the best possible choice for spin-polarized VO2 calculations.
Resumo:
The self-consistent spin-polarized band-structure calculation of ferromagnetic compound MnBiAl in its low-temperature phase has been performed. In this paper the calculation results are given. Comparison with the results of MnBi is performed in order to find the effect on electronic structure by doping with Al.
Resumo:
A new method to detect the vibrational circular dichroism (VCD) of a localized part of a chiral molecular system is reported. A local VCD amplifier was implemented, and the distance dependence of the amplification was investigated in a series of peptides. The results indicate a characteristic distance of 2.0±0.3 bonds, which suggests that the amplification is a localized phenomenon. The amplifier can be covalently coupled to a specific part of a molecule, and can be switched ON and OFF electrochemically. By subtracting the VCD spectra obtained when the amplifier is in the ON and OFF states, the VCD of the local environment of the amplifier can be separated from the total VCD spectrum. Switchable local VCD amplification thus makes it possible to “zoom in” on a specific part of a chiral molecule.
Resumo:
We have succeeded in the preparation of electrospun fibers of polystyrene incorporating a metallo-organic polymer of [Fe (II) (4-octadecyl-1,2,4-triazole)3(ClO4)2]n. The obtained fibers have diameters in the range 2–4 µm and show the characteristic spin-crossover transition associated with the metallo-organic polymer. The structure of both, polystyrene and the metallo-organic polymer, in the fibers was also studied.
Resumo:
A reply to the comment of S. Romano, Phys. Rev. E 2015 on our previous paper is provided.
Resumo:
The derivation of time evolution equations for slow collective variables starting from a micro- scopic model system is demonstrated for the tutorial example of the classical, two-dimensional XY model. Projection operator techniques are used within a nonequilibrium thermodynamics framework together with molecular simulations in order to establish the building blocks of the hydrodynamics equations: Poisson brackets that determine the deterministic drift, the driving forces from the macroscopic free energy and the friction matrix. The approach is rather general and can be applied for deriving the equations of slow variables for a broad variety of systems.