100 resultados para spatial trend analysis
Resumo:
Within this paper modern techniques such as satellite image analysis and tools provided by geographic information systems (GIS.) are exploited in order to extend and improve existing techniques for mapping the spatial distribution of sediment transport processes. The processes of interest comprise mass movements such as solifluction, slope wash, dirty avalanches and rock- and boulder falls. They differ considerably in nature and therefore different approaches for the derivation of their spatial extent are required. A major challenge is addressing the differences between the comparably coarse resolution of the available satellite data (Landsat TM/ETM+, 30 in x 30 m) and the actual scale of sediment transport in this environment. A three-stepped approach has been developed which is based on the concept of Geomorphic Process Units (GPUs): parameterization, process area delineation and combination. Parameters include land cover from satellite data and digital elevation model derivatives. Process areas are identified using a hierarchical classification scheme utilizing thresholds and definition of topology. The approach has been developed for the Karkevagge in Sweden and could be successfully transferred to the Rabotsbekken catchment at Okstindan, Norway using similar input data. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The Representative Soil Sampling Scheme (RSSS) has monitored the soil of agricultural land in England and Wales since 1969. Here we describe the first spatial analysis of the data from these surveys using geostatistics. Four years of data (1971, 1981, 1991 and 2001) were chosen to examine the nutrient (available K, Mg and P) and pH status of the soil. At each farm, four fields were sampled; however, for the earlier years, coordinates were available for the farm only and not for each field. The averaged data for each farm were used for spatial analysis and the variograms showed spatial structure even with the smaller sample size. These variograms provide a reasonable summary of the larger scale of variation identified from the data of the more intensively sampled National Soil Inventory. Maps of kriged predictions of K generally show larger values in the central and southeastern areas (above 200 mg L-1) and an increase in values in the west over time, whereas Mg is fairly stable over time. The kriged predictions of P show a decline over time, particularly in the east, and those of pH show an increase in the east over time. Disjunctive kriging was used to examine temporal changes in available P using probabilities less than given thresholds of this element. The RSSS was not designed for spatial analysis, but the results show that the data from these surveys are suitable for this purpose. The results of the spatial analysis, together with those of the statistical analyses, provide a comprehensive view of the RSSS database as a basis for monitoring the soil. These data should be taken into account when future national soil monitoring schemes are designed.
Resumo:
The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.
Resumo:
Relations between the apparent electrical conductivity of the soil (ECa) and top- and sub-soil physical properties were examined for two arable fields in southern England (Crowmarsh Battle Farms and the Yattendon Estate). The spatial variation of ECa and the soil properties was explored geostatistically. The variogram ranges showed that ECa varied on a similar spatial scale to many of the soil physical properties in both fields. Several features in the map of kriged predictions of ECa were also evident in maps of the soil properties. In addition, the correlation coefficients showed a strong relation between ECa and several soil properties. A moving correlation analysis enabled differences in the relations between ECa and the soil properties to be examined within the fields. The results indicated that relations were inconsistent; they were stronger in some areas than others. A regression of ECa on the principal component scores of the leading components for both fields showed that the first two components accounted for a large proportion of the variance in ECa, whereas the others accounted for little or none. For Crowmarsh topsoil sand and clay, loss on ignition and volumetric water measured in the autumn had large correlations on the first component, and for Yattendon they were large for topsoil sand and clay, and autumn and spring volumetric water. The cross-variograms suggested strong coregionalization between ECa and several soil physical properties; in particular subsoil sand and silt at Crowmarsh, and subsoil sand and clay at Yattendon. The structural correlations from the linear model of coregionalization confirmed the strength of the relations between ECa and the subsoil properties. Nevertheless, no one property was consistently important for both fields. Although a map of ECa can indicate the general patterns of spatial variation in the soil, it is not a substitute for information on soil properties obtained by sampling and analysing the soil. Nevertheless, it could be used to guide further sampling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Long-term monitoring of forest soils as part of a pan-European network to detect environmental change depends on an accurate determination of the mean of the soil properties at each monitoring event. Forest soil is known to be very variable spatially, however. A study was undertaken to explore and quantify this variability at three forest monitoring plots in Britain. Detailed soil sampling was carried out, and the data from the chemical analyses were analysed by classical statistics and geostatistics. An analysis of variance showed that there were no consistent effects from the sample sites in relation to the position of the trees. The variogram analysis showed that there was spatial dependence at each site for several variables and some varied in an apparently periodic way. An optimal sampling analysis based on the multivariate variogram for each site suggested that a bulked sample from 36 cores would reduce error to an acceptable level. Future sampling should be designed so that it neither targets nor avoids trees and disturbed ground. This can be achieved best by using a stratified random sampling design.
Resumo:
There are now considerable expectations that semi-distributed models are useful tools for supporting catchment water quality management. However, insufficient attention has been given to evaluating the uncertainties inherent to this type of model, especially those associated with the spatial disaggregation of the catchment. The Integrated Nitrogen in Catchments model (INCA) is subjected to an extensive regionalised sensitivity analysis in application to the River Kennet, part of the groundwater-dominated upper Thames catchment, UK The main results are: (1) model output was generally insensitive to land-phase parameters, very sensitive to groundwater parameters, including initial conditions, and significantly sensitive to in-river parameters; (2) INCA was able to produce good fits simultaneously to the available flow, nitrate and ammonium in-river data sets; (3) representing parameters as heterogeneous over the catchment (206 calibrated parameters) rather than homogeneous (24 calibrated parameters) produced a significant improvement in fit to nitrate but no significant improvement to flow and caused a deterioration in ammonium performance; (4) the analysis indicated that calibrating the flow-related parameters first, then calibrating the remaining parameters (as opposed to calibrating all parameters together) was not a sensible strategy in this case; (5) even the parameters to which the model output was most sensitive suffered from high uncertainty due to spatial inconsistencies in the estimated optimum values, parameter equifinality and the sampling error associated with the calibration method; (6) soil and groundwater nutrient and flow data are needed to reduce. uncertainty in initial conditions, residence times and nitrogen transformation parameters, and long-term historic data are needed so that key responses to changes in land-use management can be assimilated. The results indicate the general, difficulty of reconciling the questions which catchment nutrient models are expected to answer with typically limited data sets and limited knowledge about suitable model structures. The results demonstrate the importance of analysing semi-distributed model uncertainties prior to model application, and illustrate the value and limitations of using Monte Carlo-based methods for doing so. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Ramsar site of Lake Uluabat, western Turkey, suffers from eutrophication, urban and industrial pollution and water abstraction, and its water levels are managed artificially. Here we combine monitoring and palaeolimnological. techniques to investigate spatial and temporal limnological variability and ecosystem impact, using an ostracod and mollusc survey to strengthen interpretation of the fossil record. A combination of low invertebrate Biological Monitoring Working Party scores (<10) and the dominance of eutrophic diatoms in the modern lake confirms its poor ecological status. Palaeolimnological analysis of recent (last >200 yr) changes in organic and carbonate content, diatoms, stable isotopes, ostracods and molluscs in a lake sediment core (UL20A) indicates a 20th century trend towards increased sediment accumulation rates and eutrophication which was probably initiated by deforestation and agriculture. The most marked ecological shift occurs in the early 1960s, however. A subtle rise in diatom-inferred total phosphorus and an inferred reduction in submerged aquatic macrophyte cover accompanies a major increase in sediment accumulation rate. An associated marked shift in ostracod stable isotope data indicative of reduced seasonality and a change in hydrological input suggests major impact from artificial water management practices, all of which appears to have culminated in the sustained loss of submerged macrophytes since 2000. The study indicates it is vital to take both land-use and water management practices into account in devising restoration strategies. in a wider context, the results have important implications for the conservation of shallow karstic lakes, the functioning of which is still poorly understood. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The elucidation of spatial variation in the landscape can indicate potential wildlife habitats or breeding sites for vectors, such as ticks or mosquitoes, which cause a range of diseases. Information from remotely sensed data could aid the delineation of vegetation distribution on the ground in areas where local knowledge is limited. The data from digital images are often difficult to interpret because of pixel-to-pixel variation, that is, noise, and complex variation at more than one spatial scale. Landsat Thematic Mapper Plus (ETM+) and Satellite Pour l'Observation de La Terre (SPOT) image data were analyzed for an area close to Douna in Mali, West Africa. The variograms of the normalized difference vegetation index (NDVI) from both types of image data were nested. The parameters of the nested variogram function from the Landsat ETM+ data were used to design the sampling for a ground survey of soil and vegetation data. Variograms of the soil and vegetation data showed that their variation was anisotropic and their scales of variation were similar to those of NDVI from the SPOT data. The short- and long-range components of variation in the SPOT data were filtered out separately by factorial kriging. The map of the short-range component appears to represent the patterns of vegetation and associated shallow slopes and drainage channels of the tiger bush system. The map of the long-range component also appeared to relate to broader patterns in the tiger bush and to gentle undulations in the topography. The results suggest that the types of image data analyzed in this study could be used to identify areas with more moisture in semiarid regions that could support wildlife and also be potential vector breeding sites.
Resumo:
Temporal and spatial variability of aerosol optical depth (AOD) are examined using observations of direct solar radiation in the Eurasian Arctic for 1940-1990. AOD is estimated using empirical methods for 14 stations located between 66.2 degrees N and 80.6 degrees N, from the Kara Sea to the Chukchi Sea. While AOD exhibits a well-known springtime maximum and summertime minimum at all stations, atmospheric turbidity is higher in spring in the western (Kara-Laptev) part of the Eurasian Arctic. Between June and August, the eastern (East Siberian-Chukchi) sector experiences higher transparency than the western part. A statistically significant positive trend in AOD was observed in the Kara-Laptev sector between the late 1950s and the early 1930s predominantly in spring when pollution-derived aerosol dominates the Arctic atmosphere but not in the eastern sector. Although all stations are remote, those with positive trends are located closer to the anthropogenic sources of air pollution. By contrast, a widespread decline in AOD was observed between 1982 and 1990 in the eastern Arctic in spring but was limited to two sites in the western Arctic. These results suggest that the post-1982 decline in anthropogenic emissions in Europe and the former Soviet Union has had a limited effect on aerosol load in the Arctic. The post-1982 negative trends in AOD in summer, when marine aerosol is present in the atmosphere, were more common in the west. The relationships between AOD and atmospheric circulation are examined using a synoptic climatology approach. In spring, AOD depends primarily on the strength and direction of air flow. Thus strong westerly and northerly flows result in low AOD values in the East Siberian-Chukchi sector. By contrast, strong southerly flow associated with the passage of depressions results in high A OD in the Kara-Laptev sector and trajectory analysis points to the contribution of industrial regions of the sub-Arctic. In summer, low pressure gradient or anticyclonic conditions result in high atmospheric turbidity. The frequency of this weather type has declined significantly since the early 1980s in the Kara-Laptev sector, which partly explains the decline in summer AOD values. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.
Resumo:
The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA) fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20--50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NO_x and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 30--160%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA) components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of pollution were observed far downwind of continental Europe, with OA and ammonium nitrate being the major constituents of the sub-micron aerosol burden. Such anthropogenically perturbed air masses can significantly perturb regional climate far downwind of major source regions.
Resumo:
Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA) campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3) are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997). The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008) is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone concentration over West Africa during AMMA. It employs an artificial neural network to define the emissions of NOx from soils, integrated into a coupled chemistry-dynamics model. The results are compared to the observed data presented in this paper. Here we compare fluxes deduced from the observed data with the model-derived values from Delon et al. (2008).
Resumo:
This paper presents a new analysis of ocean heat content changes over the last 50 yr using isotherms by calculating the mean temperature above the 148C isotherm and the depth of the 148C isotherm as separate variables. A new quantity called the ‘‘relative heat content’’ (‘‘RHC’’) is introduced, which represents the minimum local heat content change over time, relative to a fixed isotherm. It is shown how mean temperature and isotherm depth changes make separable and additive contributions to changes in RHC. Maps of RHC change between 1970 and 2000 show similar spatial patterns to a traditional fixed-depth ocean heat content change to 220 m. However, the separate contributions to RHC suggest a more spatially uniform contribution from warming above the isotherm, while isotherm depth changes show wind-driven signals, of which some are identifiable as being related to the North Atlantic Oscillation. The time series show that the warming contribution to RHC dominates the global trend, while the depth contribution only dominates on the basin scale in the North Atlantic. The RHC shows minima associated with the major volcanic eruptions (particularly in the Indian Ocean), and these are entirely contributed by mean temperature changes rather than isotherm depth changes. The depth change contributions to RHC are strongly affected by the recently reported XBT fall-rate bias, whereas the mean temperature contributions are not. Therefore, only the isotherm depth change contributions toRHCwill need to be reassessed as fall-rate-corrected data become available.
Resumo:
Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments and on field trials. These emission spectra were obtained using an adapted FTIR spectrometer with 0.25 cm-1 spectral resolution. The CO2 and H2O vapour content in the plume from a 55 m smoke stack and the temperature of these gases were obtained by comparing the measured emission spectra with those modelled using the HITRAN atmospheric transmission database. The spatial distributions of CO2, CO and unburnt CH4 in a laboratory methane flame were reconstructed tomographically using a matrix inversion technique.
Resumo:
A multivariate fit to the variation in global mean surface air temperature anomaly over the past half century is presented. The fit procedure allows for the effect of response time on the waveform, amplitude and lag of each radiative forcing input, and each is allowed to have its own time constant. It is shown that the contribution of solar variability to the temperature trend since 1987 is small and downward; the best estimate is -1.3% and the 2sigma confidence level sets the uncertainty range of -0.7 to -1.9%. The result is the same if one quantifies the solar variation using galactic cosmic ray fluxes (for which the analysis can be extended back to 1953) or the most accurate total solar irradiance data composite. The rise in the global mean air surface temperatures is predominantly associated with a linear increase that represents the combined effects of changes in anthropogenic well-mixed greenhouse gases and aerosols, although, in recent decades, there is also a considerable contribution by a relative lack of major volcanic eruptions. The best estimate is that the anthropogenic factors contribute 75% of the rise since 1987, with an uncertainty range (set by the 2sigma confidence level using an AR(1) noise model) of 49–160%; thus, the uncertainty is large, but we can state that at least half of the temperature trend comes from the linear term and that this term could explain the entire rise. The results are consistent with the intergovernmental panel on climate change (IPCC) estimates of the changes in radiative forcing (given for 1961–1995) and are here combined with those estimates to find the response times, equilibrium climate sensitivities and pertinent heat capacities (i.e. the depth into the oceans to which a given radiative forcing variation penetrates) of the quasi-periodic (decadal-scale) input forcing variations. As shown by previous studies, the decadal-scale variations do not penetrate as deeply into the oceans as the longer term drifts and have shorter response times. Hence, conclusions about the response to century-scale forcing changes (and hence the associated equilibrium climate sensitivity and the temperature rise commitment) cannot be made from studies of the response to shorter period forcing changes.