106 resultados para soil moisture
Resumo:
Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken
Resumo:
1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.
Resumo:
More than half of global soil carbon is stored as carbonates, primarily in arid and semi-arid zones. Climate change models predict more frequent and severe rainfall events in some parts of the globe, many of which are dominated by calcareous soils. Such events trigger substantial increases in soil CO2 efflux. We hypothesised that the primary source of CO2 emissions from calcareous, arid zone soil during a single wetting event is abiotic and that soil acidification and wetting have a positive, potentially interacting, effect. We manipulated soil pH, soil moisture, and controlled soil respiration by gamma irradiating half of an 11 day incubation experiment. All manipulated experimental treatments had a rapid and enormous effect on CO2 emission. Respiration contributed ca. 5% of total CO2 efflux; the major source (carbonate buffering) varied depending on the extent of acidification and wetting. Maximum CO2 efflux occurred when pH was lowest and at intermediate matric potential. CO2 efflux was lowest at native pH when soil was air dry. Our data suggest that there may be an underestimate of soil-atmosphere carbon fluxes in arid ecosystems with calcareous soils. There is also a clear potential that these soils may become net carbon sources depending on changes in rainfall patterns, rainfall acidity, and future land management. Our findings have major implications for carbon cycling in arid zone soil and further study of carbon dynamics in these terrestrial systems at a landscape level will be required if we are to improve global climate and carbon cycling models.
Resumo:
The ability of climate models to reproduce and predict land surface anomalies is an important but little-studied topic. In this study, an atmosphere and ocean assimilation scheme is used to determine whether HadCM3 can reproduce and predict snow water equivalent and soil moisture during the 1997–1998 El Nino Southern Oscillation event. Soil moisture is reproduced more successfully, though both snow and soil moisture show some predictability at 1- and 4-month lead times. This result suggests that land surface anomalies may be reasonably well initialized for climate model predictions and hydrological applications using atmospheric assimilation methods over a period of time.
Resumo:
This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.
Resumo:
The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The interpretation of soil water dynamics under drip irrigation systems is relevant for crop production as well as on water use and management. In this study a three-dimensional representation of the flow of water under drip irrigation is presented. The work includes analysis of the water balance at point scale as well as area-average, exploring uncertainties in water balance estimations depending on the number of locations sampled. The water flow was monitored by detailed profile water content measurements before irrigation, after irrigation and 24 h later with a dense array of soil moisture access tubes radially distributed around selected drippers. The objective was to develop a methodology that could be used on selected occasions to obtain 'snap shots' of the detailed three-dimensional patterns of soil moisture. Such patterns are likely to be very complex, as spatial variability will be induced for a number of reasons, such as strong horizontal gradients in soil moisture, variations between individual sources in the amount of water applied and spatial variability is soil hydraulic properties. Results are compared with a widely used numerical model, Hydrus-2D. The observed dynamic of the water content distribution is in good agreement with model simulations, although some discrepancies concerning the horizontal distribution of the irrigation bulb are noted due to soil heterogeneity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
[1] We present a new, process-based model of soil and stream water dissolved organic carbon (DOC): the Integrated Catchments Model for Carbon (INCA-C). INCA-C is the first model of DOC cycling to explicitly include effects of different land cover types, hydrological flow paths, in-soil carbon biogeochemistry, and surface water processes on in-stream DOC concentrations. It can be calibrated using only routinely available monitoring data. INCA-C simulates daily DOC concentrations over a period of years to decades. Sources, sinks, and transformation of solid and dissolved organic carbon in peat and forest soils, wetlands, and streams as well as organic carbon mineralization in stream waters are modeled. INCA-C is designed to be applied to natural and seminatural forested and peat-dominated catchments in boreal and temperate regions. Simulations at two forested catchments showed that seasonal and interannual patterns of DOC concentration could be modeled using climate-related parameters alone. A sensitivity analysis showed that model predictions were dependent on the mass of organic carbon in the soil and that in-soil process rates were dependent on soil moisture status. Sensitive rate coefficients in the model included those for organic carbon sorption and desorption and DOC mineralization in the soil. The model was also sensitive to the amount of litter fall. Our results show the importance of climate variability in controlling surface water DOC concentrations and suggest the need for further research on the mechanisms controlling production and consumption of DOC in soils.
Resumo:
Climate model simulations consistently show that surface temperature over land increases more rapidly than over sea in response to greenhouse gas forcing. The enhanced warming over land is not simply a transient effect caused by the land–sea contrast in heat capacities, since it is also present in equilibrium conditions. This paper elucidates the transient adjustment processes over time scales of days to weeks of the surface and tropospheric climate in response to a doubling of CO2 and to changes in sea surface temperature (SST), imposed separately and together, using ensembles of experiments with an atmospheric general circulation model. These adjustment processes can be grouped into three stages: immediate response of the troposphere and surface processes (day 1), fast adjustment of surface processes (days 2–5), and adjustment of the whole troposphere (days 6–20). Some land surface warming in response to doubled CO2 (with unchanged SSTs) occurs immediately because of increased downward longwave radiation. Increased CO2 also leads to reduced plant stomatal resistance and hence restricted evaporation, which increases land surface warming in the first day. Rapid reductions in cloud amount lead in the next few days to increased downward shortwave radiation and further warming, which spreads upward from the surface, and by day 5 the surface and tropospheric response is statistically consistent with the equilibrium value. Land surface warming in response to imposed SST change (with unchanged CO2) is slower. Tropospheric warming is advected inland from the sea, and over land it occurs at all levels together rather than spreading upward from the surface. The atmospheric response to prescribed SST change in about 20 days is statistically consistent with the equilibrium value, and the warming is largest in the upper troposphere over both land and sea. The land surface warming involves reduction of cloud cover and increased downward shortwave radiation, as in the experiment with CO2 change, but in this case it is due to the restriction of moisture supply to the land (indicated by reduced soil moisture), whereas in the CO2 forcing experiment it is due to restricted evaporation despite increased moisture supply (indicated by increased soil moisture). The warming over land in response to SST change is greater than over the sea and is the dominant contribution to the land–sea warming contrast under enhanced CO2 forcing.
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.
Resumo:
Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.
Resumo:
Nitrogen oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions linked to precipitations in the Sahel on the 6 August 2006 during the AMMA campaign. This algorithm has been coupled in the surface scheme of a coupled chemistry dynamics model (MesoNH Chemistry) to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere for this particular episode. Four different simulations on the same domain and at the same period are compared: one with anthropogenic emissions only, one with soil NO emissions from a static inventory, at low time and space resolution, one with NO emissions from neural network, and one with NO from neural network plus lightning NOx. The influence of NOx from lightning is limited to the upper troposphere. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system. The subsequent enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher concentrations above 1000 m. The neural network algorithm, applied in the Sahel region for one particular day of the wet season, allows an immediate response of fluxes to environmental parameters, unlike static emission inventories. Stewart et al (2008) is a companion paper to this one which looks at NOx and ozone concentrations in the boundary layer as measured on a research aircraft, examines how they vary with respect to the soil moisture, as indicated by surface temperature anomalies, and deduces NOx fluxes. In this current paper the model-derived results are compared to the observations and calculated fluxes presented by Stewart et al (2008).
Resumo:
The Joint UK Land Environmental Simulator (JULES) was run offline to investigate the sensitivity of land surface type changes over South Africa. Sensitivity tests were made in idealised experiments where the actual land surface cover is replaced by a single homogeneous surface type. The vegetation surface types on which some of the experiments were made are static. Experimental tests were evaluated against the control. The model results show among others that the change of the surface cover results in changes of other variables such as soil moisture, albedo, net radiation and etc. These changes are also visible in the spin up process. The model shows different surfaces spinning up at different cycles. Because JULES is the land surface model of Unified Model, the results could be more physically meaningful if it is coupled to the Unified Model.
Resumo:
The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.
Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger
Resumo:
Soil moisture and soil temperature affect pre-harvest infection with Aspergillus flavus and production of aflatoxin. The objectives of our field research in Niger, West Africa, were to: (i) examine the effects of sowing date and irrigation treatments on pod yield, infection with A. flavus and aflatoxin concentration; and (ii) to quantify relations between infection, aflatoxin concentration and soil moisture stress. Seed of an aflatoxin susceptible peanut cv. JL24 was sown at two to four different sowing dates under four irrigation treatments (rainfed and irrigation at 7, 14 and 21 days intervals) between 1991 and 1994, giving 40 different 'environments'. Average air and soil temperatures of 28-34 degrees C were favourable for aflatoxin contamination. CROPGRO-peanut model was used to simulate the occurrence of moisture stress. The model was able to simulate yields of peanut well over the 40 environments (r(2) = 0.67). In general, early sowing produced greater pod yields, as well as less infection and lower aflatoxin concentration. There were negative linear relations between infection (r(2) = 0.62) and the average simulated fraction of extractable soil water (FESW) between flowering and harvest, and between aflatoxin concentration (r(2) = 0.54) and FESW in the last 25 days of pod-filling. This field study confirms that infection and aflatoxin concentration in peanut can be related to the occurrence of soil moisture stress during pod-filling when soil temperatures are near optimal for A. flavus. These relations could form the basis of a decision-support system to predict the risk of aflatoxin contamination in peanuts in similar environments. (c) 2005 Elsevier B.V. All rights reserved.