141 resultados para sialic acids
Resumo:
New Pd(II), Pt(II) and Re(V) complexes of 3-aminosalicylic acid (H(2)salNH(2)) and 3-hydroxyantranilic acid (HantOH) have been prepared, cis-[Pt (HsalNH)(PPh3)(2)] center dot 0.25C(2)H(5)OH (1), trans-[PdCl(salNH(2))(PPh3)(2)](2), trans-[ReOI2(HsalNH(2))(PPh3)] center dot (CH3)(2)CO (3), cis-[Pt(HantO)(PPh3)(2)] (4), trans-[PdCl(antOH)(PPh3)(2)] center dot 4H(2)O (5), [PdCl(antOH)(bipy)] center dot C2H5OH (6), [PdCl2(HantOH)(2)] (7) and trans-[ReOI(HantO)(PPh3)(2)] center dot (CH3)(2)CO (8). The crystal structure of complex I was determined showing chelation of HsalNH(2-) through the adjacent nitrogen and oxygen atoms of the amino and phenolate groups. Infrared and H-1 NMR spectroscopic data for the complexes are presented. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The adsorption of L-CySteine and L-methionine amino acids on a chiral Cu{5 3 1} surface was investigated with high resolution X-ray photoelectron spectroscopy (XPS) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) Spectroscopy using synchrotron radiation. XPS shows that at 300 K L-cysteine adsorbs through two oxygen, a nitrogen and a sulfur atom, in a four point 'quadrangular footprint', whereas L-methionine adsorbs through only two oxygen and a nitrogen atom in a 'triangular footprint'. NEWS was used to clarify the adsorption geometry of both molecules, which suggests a binding orientation to the top layer and second layer atoms in two different orientations associated with adsorption sites on {1 1 0} and {3 1 1} microfacets; of the Cu{5 3 1} surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fatty acids are known to play diverse roles in immune cells. They are important as a source of energy, as structural components of cell membranes, as signaling molecules and as precursors for the synthesis of eicosanoids and similar mediators. Recent research has suggested that the localization and organisation of fatty acids into distinct cellular pools has a direct influence on the behaviour of a number of proteins involved in immune cell activation, including those associated with T cell responses, antigen presentation and fatty acid-derived inflammatory mediator production. This article reviews these studies and places them in the context of existing literature in the field. These studies indicate the existence of several novel mechanisms by which altered fatty acid availability can modulate immune responses and impact upon clinical outcomes
Resumo:
Atherosclerosis, leading to cardiovascular disease, is a chronic condition involving a strong inflammatory component. There is evidence that the n-3 polyunsaturated fatty acids (PUFA) present in oily fish and fish oils protect against cardiovascular disease. While these fatty acids have well-recognised effects on plasma triacylglycerol concentrations, it is likely that they exert beneficial effects through other mechanisms in addition. A large body of evidence suggests that the n-3 PUFA have anti-inflammatory properties, some of which may be manifested in the arterial wall, either directly or indirectly, to modulate the progression of atherosclerosis. This review critically evaluates the evidence for the anti-inflammatory effects of the n-3 PUFA in cells and on pathways which have a direct influence on atherogenesis in the arterial wall.
Resumo:
Over the last 25 years, the effects of fatty acids on the immune system have been characterized using in vitro, animal and human studies. Advances in fatty acid biochemistry and molecular techniques have recently suggested new mechanisms by which fatty acids could potentially modify immune responses, including modification of the organization of cellular lipids and interaction with nuclear receptors. Possibilities for the clinical applications of n-3 PUFA are now developing. The present review focuses on the hypothesis that the anti-inflammatory properties of n-3 PUFA in the arterial wall may contribute to the protective effects of n-3 PUFA in CVD, as suggested by epidemiological and secondary prevention studies. Studies are just beginning to show that dietary n-3 PUFA can be incorporated into plaque lipid in human subjects, where they may influence the morphology and stability of the atherosclerotic lesion.
Resumo:
Fatty acids have diverse roles in all cells. They are important as a source of energy, as structural components of cell membranes, as signalling molecules and as precursors for the synthesis of eicosanoids. Recent research has suggested that the organization of fatty acids into distinct cellular pools has a particularly important role in cells of the immune system and that forms of lipid trafficking exist, which are as yet poorly understood. This Review examines the nature and regulation of cellular lipid pools in the immune system, their delivery of fatty acids or fatty acid derivatives to specific locations and their potential role in health and disease.
Resumo:
The present review comes from the authors of the recent Scientific Advisory Committee on Nutrition (SACN) review Update on Trans Fatty Acids and Health, and focuses on assessing the strength of the evidence for a link between trans-fatty acid (trans-FA) intake and cancer. It evaluates a range of human ecological, case-control and prospective studies with trans-FA exposure assessed using either dietary assessment methods or trans-FA levels in tissues. Relevant animal studies are also presented in order to elucidate potential mechanisms. It concludes that there is weak and inconsistent evidence for a relationship between trans-FA and breast or colorectal cancer. Evidence for an association between trans-FA and prostate cancer is limited, but a recent large case-control study has shown a strong interaction between risk and trans-FA intake for the RNASEL QQ/RQ genotype that is present in about 35% of the population. This potential association requires further investigation. The single study on non-Hodgkin's lymphoma reported a strong positive association, but out), used a single assessment of dietary trans-FA made at the start of the study in 1980, and the significant changes it) trans-FA intakes between then and the end Of follow-up in 1994 limit the reliability of this observation. There is insufficient evidence to allow any differentiation between the effects of trans-FA from animal or vegetable origin on cancer risk.
Resumo:
Background N-3 polyunsaturated fatty acids (PUFAs) from oily fish protect against death from cardiovascular disease. We aimed to assess the hypothesis that incorporation of n-3 and n-6 PUFAs into advanced atherosclerotic plaques increases and decreases plaque stability, respectively. Methods We did a randomised controlled trial of patients awaiting carotid endarterectomy. We randomly allocated patients control, sunflower oil (n-6), or fish-oil (n-3) capsules until surgery. Primary outcome was plaque morphology indicative of stability or instability, and outcome measures were concentrations of EPA, DHA, and linoleic acid in carotid plaques; plaque morphology; and presence of macrophages in plaques. Analysis was per protocol. Findings 188 patients were enrolled and randomised; 18 withdrew and eight were excluded. Duration of oil treatment was 7-189 days (median 42) and did not differ between groups. The proportions of EPA and DHA were higher in carotid plaque fractions in patients receiving fish oil compared with those receiving control (absolute difference 0.5 [95% CI 0.3-0.7], 0.4 [0.1-0.6], and 0.2 [0.1-0.4] g/100 g total fatty acids for EPA; and 0.3 [0.0-0.8], 0.4 [0.1-0.7], and 0.3 [0.1-0.6] g/100 g total fatty acids for DHA; in plaque phospholipids, cholesteryl esters, and triacylglycerols, respectively). Sunflower oil had little effect on the fatty acid composition of lipid fractions. Fewer plaques from patients being treated with fish oil had thin fibrous caps and signs of inflammation and more plaques had thick fibrous caps and no signs of inflammation, compared with plaques in patients in the control and sunflower oil groups (odds ratio 0.52 [95% CI 0.24-0.89] and 1.19 [1.02-1.57] vs control; 0.49 [0.23-0.90] and 1.16 [1.01-1.53] vs sunflower oil). The number of macrophages in plaques from patients receiving fish oil was lower than in the other two groups. Carotid plaque morphology and infiltration by macrophages did not differ between control and sunflower oil groups. Interpretation Atherosclerotic plaques readily incorporate n-3 PUFAs from fish-oil supplementation, inducing changes that can enhance stability of atherosclerotic plaques. By contrast, increased consumption of n-6 PUFAs does not affect carotid plaque fatty-acid composition or stability over the time course studied here. Stability of plaques could explain reductions in non-fatal and fatal cardiovascular events associated with increased n-3 PUFA intake.
Resumo:
Examination by high temperature GC (HTGC) of the methyl esters of the so-called 'ARN' naphthenic acids from crude oils of North Sea UK, Norwegian Sea and West African oilfields revealed the distributions of resolved 4-8 ring C-80 tetra acids and trace amounts of other acids. Whilst all three oils contained apparently the same the proportions of each differed, possibly reflecting the growth tempe acids, ratures of the archaebacteria from which the acids are assumed to have originated. The structures of the 4, 5, 7 and 8 ring acids are tentatively assigned by comparison with the known 6 ring acid and related natural products and an HPLC method for the isolation of the individual acids is described. ESI-MS of individual acids isolated by preparative HPLC established the elution order of the 4-8 ring acids on the HPLC and HTGC systems and revealed the presence of previously unreported acids tentatively identified as C-81 and C-82 7 and 8 ring analogues.
Resumo:
This study evaluated the effects of substituting dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) on postprandial chylomicron (triacylglycerol (TAG), apolipoprotein B-48 (apo B-48) and retinyl ester (RE)), chylomicron particle size and factor VII (FVII) response when subjects were given a standard meal. In a controlled sequential design, 51 healthy young subjects followed an SFA-rich diet (Reference diet) for 8 weeks after which half of the subjects followed a moderate MUFA diet (n = 25) and half followed a high MUFA diet (n = 26) for 16 weeks. Fasting lipoprotein and lipid measurements were evaluated at baseline and at 8-week intervals during the Reference and MUFA diets. In 25 of the subjects (n = 12 moderate MUFA, n = 13 high MUFA), postprandial responses to a standard test meal containing RE and 13 C-tripalmitin were investigated at the end of the Reference and the MUFA diet periods. Although there were no differences in the postprandial lipid markers (TAG, RE, C-13-TAG) on the two diets, the postprandial apo B-48 response (incremental area under the curve (IAUC) was reduced by 21% on the moderate MUFA diet (NS) and by 54% on the high MUFA diet (P < 0.01). The postprandial peak concentrations of apo B-48 were reduced by 33% on the moderate MUFA diet (P < 0.01) and 48% on the high MUFA diet (P < 0.001). Fasting values for factor VII activity (FVIIc), activated factor VII (FVIIa) or factor VII antigen (FVIIag) did not differ significantly when subjects were transferred from Reference to MUFA diets. However, the postprandial increases in coagulation FVII activity (FVIIc) were 18% lower and of activated FVII (FVIIa) were 17% lower on the moderate MUFA diet (NS). Postprandial increases in FVIIc and FVIIa were 50% (P < 0.05) and 29% (P < 0.07) lower on the high MUFA diet and the area under the postprandial FVIIc response curve (AUC) was also lower on the high MUFA diet (P < 0.05). Significantly higher ratios of RE:apo B-48 (P < 0.001) and 13 C-palmitic acid:apo B-48 (P < 0.01) during both MUFA diets suggest that the CMs formed carry larger amounts of dietary lipids per particle, reflecting an adaptation to form larger lipid droplets in the enterocyte when increased amounts of dietary MUFAs are fed. Smaller numbers of larger chylomicrons may explain attenuated activation of factor VII during the postprandial state when the background diet is rich in MUFA. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Mechanisms underlying milk fat conjugated linoleic acid (CLA) responses to supplements of fish oil were investigated using five lactating cows each fitted with a rumen cannula in a simple experiment consisting of two consecutive 14-day experimental periods. During the first period cows were offered 18 kg dry matter (DM) per day of a basal (B) diet formulated from grass silage and a cereal based-concentrate (0.6 : 0.4; forage : concentrate ratio, on a DM basis) followed by the same diet supplemented with 250 g fish oil per day (FO) in the second period. The flow of non-esterified fatty acids leaving the rumen was measured using the omasal sampling technique in combination with a triple indigestible marker method based on Li-Co-EDTA, Yb-acetate and Cr-mordanted straw. Fish oil decreased DM intake and milk yield, but had no effect on milk constituent content. Milk fat trans-11C(18:1), total trans-C-18:1, cis-9 trans-11 CLA, total CLA, C-18 :2 (n- 6) and total C-18:2 content were increased in response to fish oil from 1.80, 4.51, 0.39, 0. 56, 0.90 and 1.41 to 9.39, 14.39, 1.66, 1.85, 1.25 and 4.00 g/100 g total fatty acids, respectively. Increases in the cis-9, trans-11 isomer accounted for proportionately 0.89 of the CLA response to fish oil. Furthermore, fish oil decreased the flow of C-18:0 (283 and 47 g/day for B and FO, respectively) and increased that of trans-C-18:1 fatty acids entering the omasal canal (38 and 182 g/day). Omasal flows of trans-C-18:1 acids with double bonds in positions from delta-4 to -15 inclusive were enhanced, but the effects were isomer dependent and primarily associated with an increase in trans-11C(18:1) leaving the rumen (17.1 and 121.1 g/day for B and FO, respectively). Fish oil had no effect on total (4.36 and 3.50 g/day) or cis-9, trans-11 CLA (2.86 and 2.08 g/day) entering the omasal canal. Flows of cis-9, trans-11 CLA were lower than the secretion of this isomer in milk. Comparison with the transfer of the trans-9, trans-11 isomer synthesized in the rumen suggested that proportionately 0.66 and 0.97 of cis-9, trans-11 CLA was derived from endogenous conversion of trans-11 C-18:1 in the mammary gland for B and FO, respectively. It is concluded that fish oil enhances milk fat cis-9, trans-11 CLA content in response to increased supply of trans-11 C-18:1 that arises from an inhibition of trans C-18:1 reduction in the rumen.
Resumo:
Background: Endothelial dysfunction may be related to adverse effects of some dietary fatty acids (FAs). Although in vitro studies have failed to show consistent findings, this may reflect the diverse experimental protocols employed and the limited range of FAs and end points studied. Aims: To investigate the effect of dietary FA type (saturated, monounsaturated, n-6 and n-3 polyunsaturated fatty acids), concentration, incubation time and cell stimulation state, on a broad spectrum of endothelial inflammatory gene expression. Methods: Using human umbilical vein endothelial cells, with and without stimulation (+/- 10 ng/ml TNF alpha), the effects of arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA), linoleic (LA), oleic (OA) and palmitic acids (PA) (10, 25 and 100 mu M), on the expression of genes encoding a number of inflammatory proteins and transcription factors were assessed by quantitative real time RT-PCR. Results: Individual FAs differentially affect endothelial inflammatory gene expression in a gene-specific manner. EPA, LA and OA significantly up-regulated MCP-1 gene expression compared to AA (p = 0.001, 0.013, 0.008, respectively) and DHA (p < 0.0005, = 0.004, 0.002, respectively). Furthermore, cell stimulation state and FA incubation time significantly influenced reported FA effects on gene expression. Conclusions: The comparative effects of saturated, monounsaturated, n-6 and n-3 polyunsaturated FAs on endothelial gene expression depend on the specific FA investigated, its length of incubation, cell stimulation state and the gene investigated. These findings may explain existing disparity in the literature. This work was funded by the EC, Framework Programme 6 via the LIPGENE project (FOOD-CT-2003-505944).