66 resultados para service network design
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
Information technologies are used across all stages of the construction process, and are crucial in the delivery of large projects. Drawing on detailed research on a construction megaproject, we take a practice-based approach to examining the practical and theoretical tensions between existing ways of working and the introduction of new coordination tools in this paper. We analyze the new hybrid practices that emerge, using insights from actor-network theory to articulate the delegation of actions to material and digital objects within ecologies of practice. The three vignettes that we discuss highlight this delegation of actions, the “plugging” and “patching” of ecologies occurring across media and the continual iterations of working practices between different types of media. By shifting the focus from tools to these wider ecologies of practice, the approach has important managerial mplications for the stabilization of new technologies and practices and for managing technological change on large construction projects. We conclude with a discussion of new directions for research, oriented to further elaborating on the importance of the material in understanding change.
Resumo:
A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
The use of expert system techniques in power distribution system design is examined. The selection and siting of equipment on overhead line networks is chosen for investigation as the use of equipment such as auto-reclosers, etc., represents a substantial investment and has a significant effect on the reliability of the system. Through past experience with both equipment and network operations, most decisions in selection and siting of this equipment are made intuitively, following certain general guidelines or rules of thumb. This heuristic nature of the problem lends itself to solution using an expert system approach. A prototype has been developed and is currently under evaluation in the industry. Results so far have demonstrated both the feasibility and benefits of the expert system as a design aid.
Resumo:
In this paper a new nonlinear digital baseband predistorter design is introduced based on direct learning, together with a new Wiener system modeling approach for the high power amplifiers (HPA) based on the B-spline neural network. The contribution is twofold. Firstly, by assuming that the nonlinearity in the HPA is mainly dependent on the input signal amplitude the complex valued nonlinear static function is represented by two real valued B-spline neural networks, one for the amplitude distortion and another for the phase shift. The Gauss-Newton algorithm is applied for the parameter estimation, in which the De Boor recursion is employed to calculate both the B-spline curve and the first order derivatives. Secondly, we derive the predistorter algorithm calculating the inverse of the complex valued nonlinear static function according to B-spline neural network based Wiener models. The inverse of the amplitude and phase shift distortion are then computed and compensated using the identified phase shift model. Numerical examples have been employed to demonstrate the efficacy of the proposed approaches.
Resumo:
It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always <1, >2/3, and often very close to 3/4. The 3/4 exponent emerges naturally from two models of resource distribution networks, radial explosion and hierarchically branched, which incorporate a minimum of specific details. Both models show that the exponent is 2/3 if velocity of flow remains constant, but can attain a maximum value of 3/4 if velocity scales with its maximum exponent, 1/12. Quarterpower scaling can arise even when there is no underlying fractality. The canonical “fourth dimension” in biological scaling relations can result from matching the velocity of flow through the network to the linear dimension of the terminal “service volume” where resources are consumed. These models have broad applicability for the optimal design of biological and engineered systems where energy, materials, or information are distributed from a single source.
Resumo:
Posttraumatic stress disorder (PTSD) is reported to be caused by exposure to traumatic events including (but not limited to) military combat, violent personal assault, being kidnapped or taken hostage and terrorist attacks. Initial data suggest that at least 1 out of 6 Iraq War veterans are exhibiting symptoms of depression, anxiety and PTSD. Virtual reality (VR) delivered exposure therapy for PTSD has been used with reports of positive outcomes. The aim of the current paper, is to present the rationale and brief description of a Virtual Iraq/Afghanistan PTSD VR therapy application and present initial findings from its use with PTSD patients. Thus far, Virtual Iraq/Afghanistan consists of a series of customizable virtual scenarios designed to represent relevant Middle Eastern VR contexts for exposure therapy, including a city and desert road convoy environment. User-centered design feedback, needed to iteratively evolve the system, was gathered from returning Iraq War veterans in the USA and from a system deployed in Iraq and tested by an Army Combat Stress Control Team. Results from an open clinical trial at San Diego Naval Medical Center of the first 20 treatment completers indicate that 16 no longer met PTSD screening criteria at post-treatment, with only one not maintaining treatment gains at 3 month follow-up.
Resumo:
This paper proposes a practical approach to the enhancement of Quality of Service (QoS) routing by means of providing alternative or repair paths in the event of a breakage of a working path. The proposed scheme guarantees that every Protected Node (PN) is connected to a multi-repair path such that no further failure or breakage of single or double repair paths can cause any simultaneous loss of connectivity between an ingress node and an egress node. Links to be protected in an MPLS network are predefined and a Label Switched path (LSP) request involves the establishment of a working path. The use of multi-protection paths permits the formation of numerous protection paths allowing greater flexibility. Our analysis examined several methods including single, double and multi-repair routes and the prioritization of signals along the protected paths to improve the Quality of Service (QoS), throughput, reduce the cost of the protection path placement, delay, congestion and collision. Results obtained indicated that creating multi-repair paths and prioritizing packets reduces delay and increases throughput in which case the delays at the ingress/egress LSPs were low compared to when the signals had not been classified. Therefore the proposed scheme provided a means to improve the QoS in path restoration in MPLS using available network resources. Prioritizing the packets in the data plane has revealed that the amount of traffic transmitted using a medium and low priority Label Switch Paths (LSPs) does not have any impact on the explicit rate of the high priority LSP in which case the problem of a knock-on effect is eliminated.
Resumo:
This paper examines how innovation-related capabilities for production, design and marketing develop at the subsidiary level within multinational enterprises (MNEs). We focus on how subsidiary autonomy and changing opportunities to access internal (MNE) and external (host country) sources of capability contribute in a combined way to the accumulation of specialist capabilities in five Taiwan-based MNE subsidiaries in the semiconductor industry. Longitudinal analysis shows how the accumulation process is subject to discontinuities, as functional divisions are (re)opened and closed during the lifetime of the subsidiary. A composite set of innovation output measures also shows significant variations in within-function levels of capability across our sample. We conclude that subsidiary specialisation and unique subsidiary-specific advantages have evolved in a way that is strongly influenced by the above factors.
Resumo:
In recent years, life event approach has been widely used by governments all over the world for designing and providing web services to citizens through their e-government portals. Despite the wide usage of this approach, there is still a challenge of how to use this approach to design e-government portals in order to automatically provide personalised services to citizens. We propose a conceptual framework for e-government service provision based on life event approach and the use of citizen profile to capture the citizen needs, since the process of finding Web services from a government-to-citizen (G2C) system involves understanding the citizens’ needs and demands, selecting the relevant services, and delivering services that matches the requirements. The proposed framework that incorporates the citizen profile is based on three components that complement each other, namely, anticipatory life events, non-anticipatory life events and recurring services.
Resumo:
One of the primary features of modern government-to-citizen (G2C) service provision is the ability to offer a citizen-centric view of the e-government portal. Life-event approach is one of the most widely adopted paradigms supporting the idea of solving a complex event in a citizen’s life through a single service provision. Several studies have used this approach to design e-government portals. However, they were limited in terms of use and scalability. There were no mechanisms that show how to specify a life-event for structuring public e-services, or how to systematically match life-events with these services taking into consideration the citizen needs. We introduce the NOrm-Based Life-Event (NoBLE) framework for G2C e-service provision with a set of mechanisms as a guide for designing active life-event oriented e-government portals.
Resumo:
Housing in the UK accounts for 30.5% of all energy consumed and is responsible for 25% of all carbon emissions. The UK Government’s Code for Sustainable Homes requires all new homes to be zero carbon by 2016. The development and widespread diffusion of low and zero carbon (LZC) technologies is recognised as being a key solution for housing developers to deliver against this zero-carbon agenda. The innovation challenge to design and incorporate these technologies into housing developers’ standard design and production templates will usher in significant technical and commercial risks. In this paper we report early results from an ongoing Engineering and Physical Sciences Research Council project looking at the innovation logic and trajectory of LZC technologies in new housing. The principal theoretical lens for the research is the socio-technical network approach which considers actors’ interests and interpretative flexibilities of technologies and how they negotiate and reproduce ‘acting spaces’ to shape, in this case, the selection and adoption of LZC technologies. The initial findings are revealing the form and operation of the technology networks around new housing developments as being very complex, involving a range of actors and viewpoints that vary for each housing development.