82 resultados para satellite data
Resumo:
Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the products for decision making is improved by the routine provision of validation reports, for which the 10-day (dekadal) TAMSAT rainfall estimates are compared with independent gauge observations. This paper describes the methodology by which the TAMSAT method has been applied to generate the pan-African rainfall monitoring products. It is demonstrated through comparison with gauge measurements that the method provides skillful estimates, although with a systematic dry bias. This study illustrates TAMSAT’s value as a complementary method of estimating rainfall through examples of successful operational application.
Resumo:
Early in 1996, the latest of the European incoherent-scatter (EISCAT) radars came into operation on the Svalbard islands. The EISCAT Svalbard Radar (ESR) has been built in order to study the ionosphere in the northern polar cap and in particular, the dayside cusp. Conditions in the upper atmosphere in the cusp region are complex, with magnetosheath plasma cascading freely into the atmosphere along open magnetic field lines as a result of magnetic reconnection at the dayside magnetopause. A model has been developed to predict the effects of pulsed reconnection and the subsequent cusp precipitation in the ionosphere. Using this model we have successfully recreated some of the major features seen in photometer and satellite data within the cusp. In this paper, the work is extended to predict the signatures of pulsed reconnection in ESR data when the radar is pointed along the magnetic field. It is expected that enhancements in both electron concentration and electron temperature will be observed. Whether these enhancements are continuous in time or occur as a series of separate events is shown to depend critically on where the open/closed field-line boundary is with respect to the radar. This is shown to be particularly true when reconnection pulses are superposed on a steady background rate.
Resumo:
This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.
Resumo:
As satellite technology develops, satellite rainfall estimates are likely to become ever more important in the world of food security. It is therefore vital to be able to identify the uncertainty of such estimates and for end users to be able to use this information in a meaningful way. This paper presents new developments in the methodology of simulating satellite rainfall ensembles from thermal infrared satellite data. Although the basic sequential simulation methodology has been developed in previous studies, it was not suitable for use in regions with more complex terrain and limited calibration data. Developments in this work include the creation of a multithreshold, multizone calibration procedure, plus investigations into the causes of an overestimation of low rainfall amounts and the best way to take into account clustered calibration data. A case study of the Ethiopian highlands has been used as an illustration.
Investigating the relationship between Eurasian snow and the Arctic Oscillation with data and models
Resumo:
Recent research suggests Eurasian snow-covered area (SCA) influences the Arctic Oscillation (AO) via the polar vortex. This could be important for Northern Hemisphere winter season forecasting. A fairly strong negative correlation between October SCA and the AO, based on both monthly and daily observational data, has been noted in the literature. While reproducing these previous links when using the same data, we find no further evidence of the link when using an independent satellite data source, or when using a climate model.
Resumo:
Collocations between two satellite sensors are occasions where both sensors observe the same place at roughly the same time. We study collocations between the Microwave Humidity Sounder (MHS) on-board NOAA-18 and the Cloud Profiling Radar (CPR) on-board CloudSat. First, a simple method is presented to obtain those collocations and this method is compared with a more complicated approach found in literature. We present the statistical properties of the collocations, with particular attention to the effects of the differences in footprint size. For 2007, we find approximately two and a half million MHS measurements with CPR pixels close to their centrepoints. Most of those collocations contain at least ten CloudSat pixels and image relatively homogeneous scenes. In the second part, we present three possible applications for the collocations. Firstly, we use the collocations to validate an operational Ice Water Path (IWP) product from MHS measurements, produced by the National Environment Satellite, Data and Information System (NESDIS) in the Microwave Surface and Precipitation Products System (MSPPS). IWP values from the CloudSat CPR are found to be significantly larger than those from the MSPPS. Secondly, we compare the relation between IWP and MHS channel 5 (190.311 GHz) brightness temperature for two datasets: the collocated dataset, and an artificial dataset. We find a larger variability in the collocated dataset. Finally, we use the collocations to train an Artificial Neural Network and describe how we can use it to develop a new MHS-based IWP product. We also study the effect of adding measurements from the High Resolution Infrared Radiation Sounder (HIRS), channels 8 (11.11 μm) and 11 (8.33 μm). This shows a small improvement in the retrieval quality. The collocations described in the article are available for public use.
Resumo:
There is a pressing need for good rainfall data for the African continent both for humanitarian and climatological purposes. Given the sparseness of ground-based observations, one source of rainfall information is Numerical Weather Prediction (NWP) model outputs. The aim of this article is to investigate the quality of two NWP products using Ethiopia as a test case. The two products evaluated are the ERA-40 and NCEP reanalysis rainfall products. Spatial, seasonal and interannual variability of rainfall have been evaluated for Kiremt (JJAS) and Belg (FMAM) seasons at a spatial scale that reflects the local variability of the rainfall climate using a method which makes optimum use of sparse gauge validation data. We found that the spatial pattern of the rainfall climatology is captured well by both models especially for the main rainy season Kiremt. However, both models tend to overestimate the mean rainfall in the northwest, west and central regions but underestimate in the south and east. The overestimation is greater for NCEP in Belg season and greater for ERA-40 in Kiremt Season. ERA-40 captures the annual cycle over most of the country better than NCEP, but strongly exaggerates the Kiremt peak in the northwest and west. The overestimation in Kiremt appears to have been reduced since the assimilation of satellite data increased around 1990. For both models the interannual variability is less well captured than the spatial and seasonal variability. Copyright © 2008 Royal Meteorological Society
Resumo:
Robust responses and links between the tropical energy and water cycles are investigated using multiple datasets and climate models over the period 1979-2006. Atmospheric moisture and net radiative cooling provide powerful constraints upon future changes in precipitation. While moisture amount is robustly linked with surface temperature, the response of atmospheric net radiative cooling, derived from satellite data, is less coherent. Precipitation trends and relationships with surface temperature are highly sensitive to the data product and the time-period considered. Data from the Special Sensor Microwave Imager (SSM/I) produces the strongest trends in precipitation and response to warming of all the datasets considered. The tendency for moist regions to become wetter while dry regions become drier in response to warming is captured by both observations and models. Citation: John, V. O., R. P. Allan, and B. J. Soden (2009), How robust are observed and simulated precipitation responses to tropical ocean warming?
Resumo:
Relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle are quantified in models, reanalyses, and observations over the period 1980-2000. The robust sensitivity of clear-sky surface net longwave radiation (SNLc) to column-integrated water vapor (CWV) of 1-1.5 Wm(-2) mm(-1) combined with the positive relationship between CWV and surface temperature (T-s) explains substantial increases in clear-sky longwave radiative cooling of the atmosphere (Q(LWc)) to the surface over the period. Clear-sky outgoing longwave radiation (OLRc) is highly sensitive to changes in aerosol and greenhouse gas concentrations in addition to temperature and humidity. Over tropical ocean regions of mean descent, Q(LWc) increases with T-s at similar to 3.5-5.5 W m(-2) K-1 for reanalyses, estimates derived from satellite data, and models without volcanic forcing included. Increased Q(LWc) with warming across the tropical oceans helps to explain model ensemble mean increases in precipitation of 0.1-0.15 mm day(-1) K-1, which are primarily determined by ascent regions where precipitation increases at the rate expected from the Clausius-Clapeyron equation. The implications for future projections in the atmospheric hydrological cycle are discussed
Resumo:
The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.
Resumo:
Within this paper modern techniques such as satellite image analysis and tools provided by geographic information systems (GIS.) are exploited in order to extend and improve existing techniques for mapping the spatial distribution of sediment transport processes. The processes of interest comprise mass movements such as solifluction, slope wash, dirty avalanches and rock- and boulder falls. They differ considerably in nature and therefore different approaches for the derivation of their spatial extent are required. A major challenge is addressing the differences between the comparably coarse resolution of the available satellite data (Landsat TM/ETM+, 30 in x 30 m) and the actual scale of sediment transport in this environment. A three-stepped approach has been developed which is based on the concept of Geomorphic Process Units (GPUs): parameterization, process area delineation and combination. Parameters include land cover from satellite data and digital elevation model derivatives. Process areas are identified using a hierarchical classification scheme utilizing thresholds and definition of topology. The approach has been developed for the Karkevagge in Sweden and could be successfully transferred to the Rabotsbekken catchment at Okstindan, Norway using similar input data. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.
Resumo:
Airborne dust is of concern due to hazards in the localities affected by erosion, transport and deposition, but it is also of global concern due to uncertainties over its role in radiative forcing of climate. In order to model the environmental impact of dust, we need a better knowledge of sources and transport processes. Satellite remote sensing has been instrumental in providing this knowledge, through long time series of observations of atmospheric dust transport. Three remote sensing methodologies have been used, and are reviewed briefly in this paper. Firstly the use of observations from the Total Ozone Mapping Spectrometer (TOMS), secondly the use of the Infrared Difference Dust Index (IDDI) from Meterosat infrared data, thirdly the use of MODIS images from the rapid response system. These data have highlighted the major global sources of dust, mist of which are associated with endoreic drainage basins in deserts, which held lakes during Quaternary humid climate phases, and identified the Bodele Depression in Tchad as the dustiest place on Earth.
Resumo:
Current changes in tropical precipitation from satellite data and climate models are assessed. Wet and dry regions of the tropics are defined as the highest 30% and lowest 70% of monthly precipitation values. Observed tropical ocean trends in the wet regime (1.8%/decade) and the dry regions (−2.6%/decade) according to the Global Precipitation Climatology Project (GPCP) over the period including Special Sensor Microwave Imager (SSM/I) data (1988–2008), where GPCP is believed to be more reliable, are of smaller magnitude than when including the entire time series (1979–2008) and closer to model simulations than previous comparisons. Analysing changes in extreme precipitation using daily data within the wet regions, an increase in the frequency of the heaviest 6% of events with warming for the SSM/I observations and model ensemble mean is identified. The SSM/I data indicate an increased frequency of the heaviest events with warming, several times larger than the expected Clausius–Clapeyron scaling and at the upper limit of the substantial range in responses in the model simulations.
Resumo:
Snow properties have been retrieved from satellite data for many decades. While snow extent is generally felt to be obtained reliably from visible-band data, there is less confidence in the measurements of snow mass or water equivalent derived from passive microwave instruments. This paper briefly reviews historical passive microwave instruments and products, and compares the large-scale patterns from these sources to those of general circulation models and leading reanalysis products. Differences are seen to be large between the datasets, particularly over Siberia. A better understanding of the errors in both the model-based and measurement-based datasets is required to exploit both fully. Techniques to apply to the satellite measurements for improved large-scale snow data are suggested.