117 resultados para salmonella bredeney
Resumo:
Aims: The aim of the study was to investigate how stresses like low pH, which may be encountered in farms or food preparation premises, shape populations of Salmonella enterica by the selection of stress-resistant variants. Methods and Results: Stationary-phase cultures of S. enterica serovar Enteritidis and serovar Typhimurium (one strain of each) were exposed to pH 2Æ5 for up to 4 h, followed by growth at pH 7 for 48 h. This process was repeated 15 times in two separate experiments, which increased the acid resistance of the three out of four populations we obtained, by three- to fourfold. Sustainable variants derived from the populations showed changes in colony morphology, expression of SEF17 fimbriae, growth, increased heat resistance and reduced virulence. Conclusions: The study demonstrates that low pH environments can select for populations of S. enterica with persistent phenotypic changes such as increased acid resistance and occasionally increased SEF17 expression and lower virulence. Significance and Impact of the Study: There is a common belief that increased acid resistance coincides with increased virulence. This study demonstrates for the first time that increased acid resistance often impairs virulence and affects the general phenotype of S. enterica.
Resumo:
To investigate the role of the SEF14 fimbrial antigen in pathogenesis, a single defined sefA (SEF14(-)) inactivated mutant of Salmonella enteritidis strain LA5 was constructed and tested in a number of biological assay systems. There was no significant difference between the wild-type strain and the isogenic SEF14(-) mutant in their abilities to adhere to and invade HEp-2 epithelial cells or their survival in mouse peritoneal macrophages, whereas the SEF14(-) mutant was ingested more rapidly by isolated human PMN. Both the strains colonized the intestine, invaded and spread systemically in 1 day-old chicks, laying hens and BALB/c mice equally well. A significantly greater number of chicks excreted the wildtype SEF14(+) strain during the first week following infection as compared to those infected with the SEF14(-) mutant. However, similar numbers of chicks excreted the two strains between 2 and 7 weeks after infection. These results indicate that possession of SEF14 fimbriae alone do not appear to play a significant role in the pathogenesis of S. enteritidis although its contribution to virulence may be dependent on the host species infected. (C) 1996 Academic Press Limited
Resumo:
The pefA gene which encoded the serotype associated plasmid (SAP) mediated fimbrial major subunit antigen of Salmonella enterica serotype Typhimurium shared genetic identity with 128 of 706 salmonella isolates as demonstrated by dot (colony) hybridization. Seventy-seven of 113 isolates of Typhimurium and individual isolates of serotypes Bovis-morbificans, Cholerae-suis and Enteritidis phage type 9b hybridized pefA strongly, whereas 48 isolates of Enteritidis hybridized pefA weakly and one Enteritidis isolate of phage type 14b failed to hybridize. Individual isolates of 294 serotypes and 247 individual isolates of serotype Dublin did not hybridize pefA. Southern hybridization of plasmids extracted from Enteritidis demonstrated that the pefA gene probe hybridized strongly an atypical SAP of 80 kb in size harboured by one Enteritidis isolate of phage-type 9b, whereas the typical SAP of 58 kb in size harboured by 48 Enteritidis isolates hybridized weakly. One Enteritidis isolate of phage type 14b which failed to hybridize pefA in dot (colony) hybridization experiments was demonstrated to be plasmid free. A cosmid library of Enteritidis phage type 4 expressed in Escherichia coli K12 was screened by hybridization for the presence of pef sequences. Recombinant clones which were deduced to harbour the entire pef operon elaborated a PEF-like fimbrial structure at the cell surface. The PEF-like fimbrial antigen was purified from one cosmid clone and used in western blot experiments with sera from chickens infected with Enteritidis phage-type 4. Seroconversion to the fimbrial antigen was observed which indicated that the Enteritidis PEF-like fimbrial structure was expressed at some stage during infection. Nucleotide sequence analysis demonstrated that the pefA alleles of Typhimurium and Enteritidis phage-type 4 shared 76% DNA nucleotide and 82% deduced amino acid sequence identity.
Resumo:
A polymerase chain reaction (PCR) for the specific detection of the gene sequence, sefA, encoded by all isolates of Salmonella enteritidis, was developed. The PCR could detect as few as four S enteritidis washed bacterial cells but egg contents inhibited the PCR. Eggs spiked with 50 S enteritidis bacterial cells were homogenised, inoculated into buffered peptone water and grown at 37 degrees C for 16 hours, when the PCR was successful. A positive internal control was developed to differentiate between true and false negative PCR results for the detection of S enteritidis. In a limited trial of the egg handling procedures and the PCR, one of 250 chickens' eggs from retail outlets was found to be contaminated with S enteritidis.
Resumo:
Salmonella enteritidis isolated from poultry infections generated a convoluted colonial morphology after 48 h growth on colonisation factor antigen (CFA) agar at 25 degrees C. A mutant S. enteritidis defective for the elaboration of the SEF17 fimbrial antigen, in which the agf gene cluster was inactivated by insertion of an ampicillin resistance gene cassette, and other wild-type S. enteritidis transduced to this genotype failed to produce convoluted colonies. However, growth of SEF17(-) mutans at 25 degrees C on CFA agar supplemented with 0.001% Congo red resulted in partial recovery of the phenotype. Immunoelectron microscopy demonstrated that copious amounts of the SEF17 fimbrial antigen were present in the extracellular matrix of convoluted colonies of wild-type virulent S. enteritidis isolates. Bacteria were often hyperflagellated also. Immunoelectron microscopy of SEF17(-) mutants grown on CFA agar+0.001% Congo red demonstrated the elaboration of an as yet undefined fimbrial structure. Isolates of S. enteritidis which were described previously as avirulent and sensitive to environmental stress failed to express SEF17 or produce convoluted colonies. These data indicate an essential role for SEF17, and possibly for another fimbria and flagella, in the generation of the convoluted colonial phenotype. The relationship between virulence and colonial phenotype is discussed.
Resumo:
The nucleotide sequence of a 3 kb region immediately upstream of the sef operon operon of Salmonella enteritidis was determined. A 1230 base pair insertion sequence which shared sequence identity (> 75%) with members of the IS3 family was revealed. This element, designated IS1230, had almost identical (90% identity) terminal inverted repeats to Escherichia coli IS3 but unlike other IS3-like sequences lacked the two characteristic open reading frames which encode the putative transposase. S. enteritidis possessed only one copy of this insertion sequence although Southern hybridisation analysis of restriction digests of genomic DNA revealed another fragment located in a region different from the sef operon which hybridised weakly which suggested the presence of an IS1230 homologue. The distribution of IS1230 and IS1230-like elements was shown to be widespread amongst salmonellas and the patterns of restriction fragments which hybridised differed significantly between Salmonella serotypes and it is suggested that IS1230 has potential for development as a differential diagnostic tool.
Resumo:
Specific immunological reagents were used to investigate the expression of SEF17 fimbriae by cultured strains of Salmonella enteriditis. Most strains of Salm. enteritidis tested expressed SEF17 when cultured at temperatures of 18-30 degrees C. However, two wild-type strains produced SEF17 when also grown at 37 degrees C and 42 degrees C. Colonization factor antigen agar was the optimum medium for SEF17 expression, whereas Drigalski and Sensitest agars poorly supported SEF17 production. Very fine fimbriae produced by a strain of Salm. typhimurium were specifically and strongly labelled by SEF17 monoclonal and polyclonal antibodies, indicating considerable antigenic conservation between the two. Curli fimbriae from Escherichin coli were similarly labelled. The production of these fimbriae corellated with the binding of fibronectin by the organism. Congo red binding by cultured bacteria was not a reliable criterion for the expression of SEF17 fimbriae.
Resumo:
A semi-quantitative cloacal-swab method was used as an indirect measure of caecal colonisation of one-day old and five-day old chicks after oral dosing with wild-type Salmonella enterica serovar Enteritidis PT4 and,genetically defined isogenic derivatives lacking the ability to elaborate flagella or fimbriae. Birds of both ages were readily and persistently colonised by all strains although there war a decline in shedding by the older birds after about 21 days. There were no significant differences in shedding of wild-type or mutants in single-dose experiments. In competition experiments, in which five-day old birds were dosed orally with wild-type and mutants together, shedding of non-motile derivatives was significantly lower than wild-type, At 35 days post infection, birds were sacrificed and direct counts of mutants and wild-type from each caecum were determined. Whilst there appeared to be poor correlation between direct counts and the indirect swab method, the overall trends shown by these methods of assessment indicated that flagella and not fimbriae were important in caecal colonisation in these models. Crown Copyright (C) 1999 Published by Elsevier Science B.V.
Resumo:
To gain an understanding of the role of fimbriae and flagella in the adherence and colonisation of Salmonella enterica serotype Enteritidis in chickens, an in-vitro gut adherence assay was developed and used to assess the adherence of a wild-type Enteritidis strain and isogenic non-fimbriate and non-flagellate mutant strains. Enteritidis strain S1400/94, a clinical isolate virulent in chickens, was shown to possess genes which encoded type 1, SEF14, SEF17, plasmid-encoded and long polar fimbriae. Mutant strains unable to elaborate these fimbriae were created by allelic exchange. Each fimbrial operon was inactivated by the insertion of an antibiotic resistance gene cassette. In addition, fliC, motAB and cheA loci, which encode the major subunit of the flagellum, the energy-translation system for motility and one of the chemotaxis signalling proteins, respectively, were similarly inactivated. Non-flagellate mutant strains were significantly less adherent than the wild-type strain, whereas mutant strains defective for the elaboration of any of the types of fimbriae adhered as well as the wild-type strain. A flagellate but non-motile (paralysed) mutant strain and a smooth-swimming chemotaxis-deficient mutant strain were shown to be less adherent than the wild-type strain, but that observation depended on the assay conditions used.
Resumo:
Salmonella enteritidis expresses flagella and several finely regulated fimbriae, including SEF14, SEF17 and SEF21 (type 1). A panel of mutants was prepared in three strains of S. enteritidis to elucidate the role of these surface appendages in the association with and invasion of cultured epithelial cells. In all assays, the naturally occurring regulatory-defective strain 27655R associated with tissue culture cells significantly more than wild-type progenitor strains LA5 and S1400/94. Compared with wild-type strains, SEF14 mutants had no effect on association and invasion, whereas SEF17, SEF21 and aflagellate mutants showed significant reductions in both processes. Histological examination suggested a role for SEF17 in localized, aggregative adherence, which could be specifically blocked by anti-SEF17 sera and purified SEF17 fimbriae. SEF21-mediated association was neutralized by mannose and a specific monoclonal antibody, although to observe enhanced association it was necessary for the bacteria to be in fimbriate phase prior to infection. Additionally, aflagellate mutants associated and invaded less than motile bacteria. This study demonstrated the potential for multifactorial association and invasion of epithelial cells which involved SEF17 and SEF21 fimbriae, and flagella-mediated motility.
Resumo:
Survival of enteric pathogens exposed to various environmental stresses depends upon a number of protective responses, some of which are associated with induction of virulence determinants. Flagella and fimbriae are putative virulence determinants of Salmonella spp, and ELISAs specific for the detection of flagella and SEF21, SEF14 and SEF17 fimbriae were used to assess the effect of temperature and pH upon their elaboration by isolates of Salmonella serotype Enteritidis in planktonic growth and on the surface of two-dimensional gradient agar plates, For three phage type 4 isolates of Enteritidis of comparative clinical provenance, similar phenotypes for the elaboration of these surface antigens were observed. SEF14 fimbriae were elaborated in planktonic growth at 37 degrees C, but not 20 degrees C, at pH 4.77 and above but not at pH 4.04; whereas on agar gradient plates SEF14 fimbriae were elaborated poorly but with best yields at pH 4.04, SEF17 fimbriae were elaborated in planktonic growth at 20 degrees C, but not at 37 degrees C, at pH 6.18 and above but not at pH 5.09 or below; whereas on agar gradient plates SEF17 fimbriae were elaborated well even at pH 4.65, SEF21 fimbriae were expressed very poorly under all conditions tested, Planktonic growth at 37 degrees C induced least flagella whereas growth at 20 degrees C, and particularly surface growth at lower pH values, induced a 'hyper-flagellate' phenotype, Single colonies allowed to form on gradient agar plates were shown to generate different colonial morphologies which were dependent on initial pH. These results demonstrate that the physicochemical environment is an important determinant of bacterial response, especially the induction of putative virulence factors.
Resumo:
The genome of Salmonella enterica serovar Enteritidis was shown to possess three IS3-like insertion elements, designated IS1230A, B and C, and each was cloned and their respective deoxynucleotide sequences determined. Mutations in elements IS1230A and B resulted in frameshifts in the open reading frames that encoded a putative transposase to be inactive. IS1230C was truncated at nucleotide 774 relative to IS1230B and therefore did not possess the 3' terminal inverted repeat. The three IS1230 derivatives were closely related to each other based on nucleotide sequence similarity. IS1230A was located adjacent to the sef operon encoding SEF14 fimbriae located at minute 97 of the genome of S. Enteritidis. IS1230B was located adjacent to the umuDC operon at minute 42.5 on the genome, itself located near to one terminus of an 815-kb genome inversion of S. Enteritidis relative to S. Typhimurium. IS1230C was located next to attB, the bacteriophage P22 attachment site, and proB, encoding gamma-glutamyl phosphate reductase. A truncated 3' remnant of IS1230, designated IS1230T, was identified in a clinical isolate of S. Typhimurium DT193 strain 2391. This element was located next to attB adjacent to which were bacteriophage P22-like sequences. Southern hybridisation of total genomic DNA from eighteen phage types of S. Enteritidis and eighteen definitive types of S. Typhimurium showed similar, if not identical, restriction fragment profiles in the respective serovars when probed with IS1230A.
Resumo:
Isogenic mutants of Salmonella enteritidis defective for the elaboration of fimbrial types SEF14, SEF17, SEF21 and flagella were used to study the contribution these organelles made to colonization, invasion and lateral transfer in young chicks. The caecum, liver and spleen were colonized within 24 h following oral inoculation of 1-day-old chicks with 10(5) wild-type S. enteritidis strain LA5. However, for some mutants, the numbers of organisms recovered from internal organs was reduced significantly, particularly at 24 h post-inoculum, which supported the hypothesis that the organelles contribute to invasion and dissemination to internal organs. Specifically, mutations affecting SEF17, SEF21 and flagella contributed to a delay in colonization of the spleen, and those affecting SEF21 and flagella delayed colonization of the liver. Lower numbers of bacteria were recovered from the caecum with mutants deficient in elaboration of SEF21. Sentinel birds were colonized by LA5 or EAV40 (14(-), 17(-), 21(-), fla(-)) directly from the environment within 2 days, although a consistent slight delay was observed with the multiple mutant. Overall, our data suggest a collective role for SEF17, SEF21 and flagella, but not SEF14, in the early stages of colonization and invasion of young chicks by S. enteritidis, but these surface appendages appear unnecessary for colonization of birds from their immediate environment.
Resumo:
Rat ileal air interface and submerged explant models were developed and used to compare the adhesion of Salmonella enterica var Enteritidis wild-type strains with that of their isogenic single and multiple deletion mutants. The modified strains studied were defective for fimbriae, flagella, motility or chemotaxis and binding was assessed on tissues with and without an intact mucus layer. A multiple afimbriate/aflagellate (fim(-)/fla(-)) strain, a fimbriate but aflagellate (fla(-)) strain and a fimbriate/flagellate but non-motile (mot(-)) strain bound significantly less extensively to the explants than the corresponding wild-type strains. With the submerged explant model this difference was evident in tissues with or without a mucus layer, whereas in the air interface model it was observed only in tissues,vith an intact mucus layer. A smooth swimming chemotaxis-defective (che(-)) strain and single or multiple afimbriate strains bound to explants as well as their corresponding wild-type strain. This suggests that under the present experimental conditions fimbriae were not essential for attachment of S. enterica var Enteritidis to rat ileal explants, However; the possession of active flagella did appear to be an important factor. in enabling salmonellae to penetrate the gastrointestinal mucus layer and attach specifically to epithelial cells.