81 resultados para rotational oscillation
Resumo:
An analysis of the results of those "Ashes" cricket test matches between England and Australia which are played in Australia suggests a correlation between these results and the El-Niño Southern Oscillation, or ENSO. In those years with a positive ENSO, results favour Australia, whereas in those years with a negative ENSO, results are more even. A potential mechanism is presented for this apparent correlation.
Resumo:
Mizushima and Venkateswarlu showed in 1953 that certain molecules have the property that excited vibrational states may possess rotational spectra even when the rotational spectrum of the ground vibrational state is forbidden by symmetry. We call such a spectrum a vibrationally induced rotational spectrum, and have made a systematic examination of the point groups which permit such behaviour. We also give formulae for the approximate line frequencies and intensities in these spectra, and discuss some of the problems involved in observing them. The spectra can only arise from degenerate vibrational states, and are of three possible types: i) symmetric top perpendicular spectra, shown by molecules belonging to the point groups Dnh, Dn and Cnh, where n is odd; (ii) symmetric top parallel spectra, shown by molecules belonging to Dnd and S2n, where n is even; and (iii) spherical top spectra, shown by molecules belonging to T or Td. Excited vibrational states of polar molecules of point groups Cnv or Cn, where n is odd, may also possess vibrationally induced perpendicular components of type (i), in addition to their ordinary parallel spectra. In addition to the above limitations on the point groups there are, in general, limitations on the symmetry species of the degenerate vibrational states.
Resumo:
Rovibrational energy levels, transition frequencies, and linestrengths are computed variationally for the sulfur hydrides D2S and HDS, using ab initio potential energy and dipole surfaces. Wave-numbers for the pure rotational transitions agree to within 0.2 cm−1 of the experimental lines. For the fundamental vibrational transitions, the band origins for D2S are 860.4, 1900.6, and 1912.0 cm−1 for ν2, ν1, and ν3, respectively, compared with the corresponding experimental values of 855.4, 1896.4, and 1910.2 cm−1. For HDS, we compute ν2 to be 1039.4 cm−1, compared with the experimental value of 1032.7 cm−1. The relative merits of local and normal mode descriptions for the overtone stretching band origins are discussed. Our results confirm the local mode nature of the H2S, D2S, and HDS system.
Resumo:
The definition and interpretation of the Arctic oscillation (AO) are examined and compared with those of the North Atlantic oscillation (NAO). It is shown that the NAO reflects the correlations between the surface pressure variability at its centers of action, whereas this is not the case for the AO. The NAO pattern can be identified in a physically consistent way in principal component analysis applied to various fields in the Euro-Atlantic region. A similar identification is found in the Pacific region for the Pacific–North American (PNA) pattern, but no such identification is found here for the AO. The AO does reflect the tendency for the zonal winds at 35° and 55°N to anticorrelate in both the Atlantic and Pacific regions associated with the NAO and PNA. Because climatological features in the two ocean basins are at different latitudes, the zonally symmetric nature of the AO does not mean that it represents a simple modulation of the circumpolar flow. An increase in the AO or NAO implies strong, separated tropospheric jets in the Atlantic but a weakened Pacific jet. The PNA has strong related variability in the Pacific jet exit, but elsewhere the zonal wind is similar to that related to the NAO. The NAO-related zonal winds link strongly through to the stratosphere in the Atlantic sector. The PNA-related winds do so in the Pacific, but to a lesser extent. The results suggest that the NAO paradigm may be more physically relevant and robust for Northern Hemisphere variability than is the AO paradigm. However, this does not disqualify many of the physical mechanisms associated with annular modes for explaining the existence of the NAO.
Resumo:
The distribution of the daily wintertime North Atlantic Oscillation (NAO) index in the 40-yr ECMWF Re-Analysis (ERA-40) is significantly negatively skewed. Dynamical and statistical analyses both suggest that this skewness reflects the presence of two distinct regimes—referred to as “Greenland blocking” and “subpolar jet.” Changes in both the relative occurrence and in the structure of the regimes are shown to contribute to the long-term NAO trend over the ERA-40 period. This is contrasted with the simulation of the NAO in 100-yr control and doubled CO2 integrations of the third climate configuration of the Met Office Unified Model (HadCM3). The model has clear deficiencies in its simulation of the NAO in the control run, so its predictions of future behavior must be treated with caution. However, the subpolar jet regime does become more dominant under anthropogenic forcing and, while this change is small it is clearly statistically significant and does represent a real change in the nature of NAO variability in the model.
Resumo:
The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.
Resumo:
The new HadKPP atmosphere–ocean coupled model is described and then used to determine the effects of sub-daily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intra-seasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K Profile Parameterization ocean-boundary-layer model. Four 30-member ensembles were performed that varied in oceanic vertical resolution between 1 m and 10 m and in coupling frequency between 3 h and 24 h. The 10 m, 24 h ensemble exhibited roughly 60% of the observed 30–50 day variability in sea-surface temperatures and rainfall and very weak northward propagation. Enhancing either only the vertical resolution or only the coupling frequency produced modest improvements in variability and only a standing intra-seasonal oscillation. Only the 1 m, 3 h configuration generated organized, northward-propagating convection similar to observations. Sub-daily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved air–sea coupling did not improve the eastward propagation of the boreal summer intra-seasonal oscillation in this model. Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical sub-seasonal variability. In HadKPP, the mere presence of air–sea coupling was not sufficient to generate an intra-seasonal oscillation resembling observations.
Resumo:
The Arctic has undergone substantial changes over the last few decades in various cryospheric and derivative systems and processes. Of these, the Arctic sea ice regime has seen some of the most rapid change and is one of the most visible markers of Arctic change outside the scientific community. This has drawn considerable attention not only from the natural sciences, but increasingly, from the political and commercial sectors as they begin to grapple with the problems and opportunities that are being presented. The possible impacts of past and projected changes in Arctic sea ice, especially as it relates to climatic response, are of particular interest and have been the subject of increasing research activity. A review of the current knowledge of the role of sea ice in the climate system is therefore timely. We present a review that examines both the current state of understanding, as regards the impacts of sea-ice loss observed to date, and climate model projections, to highlight hypothesised future changes and impacts on storm tracks and the North Atlantic Oscillation. Within the broad climate-system perspective, the topics of storminess and large-scale variability will be specifically considered. We then consider larger-scale impacts on the climatic system by reviewing studies that have focused on the interaction between sea-ice extent and the North Atlantic Oscillation. Finally, an overview of the representation of these topics in the literature in the context of IPCC climate projections is presented. While most agree on the direction of Arctic sea-ice change, the rates amongst the various projections vary greatly. Similarly, the response of storm tracks and climate variability are uncertain, exacerbated possibly by the influence of other factors. A variety of scientific papers on the relationship between sea-ice changes and atmospheric variability have brought to light important aspects of this complex topic. Examples are an overall reduction in the number of Arctic winter storms, a northward shift of mid-latitude winter storms in the Pacific and a delayed negative NAO-like response in autumn/winter to a reduced Arctic sea-ice cover (at least in some months). This review paper discusses this research and the disagreements, bringing about a fresh perspective on this issue.
Resumo:
The rotational symmetry of a methane molecule can be used to great advantage to calculate the bond angle. The problem is worked out in this article.