33 resultados para robot-assisted wireless sensor networks sensor relocation
Resumo:
Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.
Resumo:
A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.
Resumo:
Embedded computer systems equipped with wireless communication transceivers are nowadays used in a vast number of application scenarios. Energy consumption is important in many of these scenarios, as systems are battery operated and long maintenance-free operation is required. To achieve this goal, embedded systems employ low-power communication transceivers and protocols. However, currently used protocols cannot operate efficiently when communication channels are highly erroneous. In this study, we show how average diversity combining (ADC) can be used in state-of-the-art low-power communication protocols. This novel approach improves transmission reliability and in consequence energy consumption and transmission latency in the presence of erroneous channels. Using a testbed, we show that highly erroneous channels are indeed a common occurrence in situations, where low-power systems are used and we demonstrate that ADC improves low-power communication dramatically.