87 resultados para robot costration kit
Resumo:
Objective: To evaluate the effect of robot-mediated therapy on arm dysfunction post stroke. Design: A series of single-case studies using a randomized multiple baseline design with ABC or ACB order. Subjects (n = 20) had a baseline length of 8, 9 or 10 data points. They continued measurement during the B - robot-mediated therapy and C - sling suspension phases. Setting: Physiotherapy department, teaching hospital. Subjects: Twenty subjects with varying degrees of motor and sensory deficit completed the study. Subjects attended three times a week, with each phase lasting three weeks. Interventions: In the robot-mediated therapy phase they practised three functional exercises with haptic and visual feedback from the system. In the sling suspension phase they practised three single-plane exercises. Each treatment phase was three weeks long. Main measures: The range of active shoulder flexion, the Fugl-Meyer motor assessment and the Motor Assessment Scale were measured at each visit. Results: Each subject had a varied response to the measurement and intervention phases. The rate of recovery was greater during the robot-mediated therapy phase than in the baseline phase for the majority of subjects. The rate of recovery during the robot-mediated therapy phase was also greater than that during the sling suspension phase for most subjects. Conclusion: The positive treatment effect for both groups suggests that robot-mediated therapy can have a treatment effect greater than the same duration of non-functional exercises. Further studies investigating the optimal duration of treatment in the form of a randomized controlled trial are warranted.
Resumo:
Robot-mediated neurorehabilitation is a rapidly advancing field that seeks to use advances in robotics, virtual realities, and haptic interfaces, coupled with theories in neuroscience and rehabilitation to define new methods for treating neurological injuries such as stroke, spinal cord injury, and traumatic brain injury. The field is nascent and much work is needed to identify efficient hardware, software, and control system designs alongside the most effective methods for delivering treatment in home and hospital settings. This paper identifies the need for robots in neurorehabilitation and identifies important goals that will allow this field to advance.
Resumo:
Movement disorders (MD) include a group of neurological disorders that involve neuromotor systems. MD can result in several abnormalities ranging from an inability to move, to severe constant and excessive movements. Strokes are a leading cause of disability affecting largely the older people worldwide. Traditional treatments rely on the use of physiotherapy that is partially based on theories and also heavily reliant on the therapists training and past experience. The lack of evidence to prove that one treatment is more effective than any other makes the rehabilitation of stroke patients a difficult task. UL motor re-learning and recovery levels tend to improve with intensive physiotherapy delivery. The need for conclusive evidence supporting one method over the other and the need to stimulate the stroke patient clearly suggest that traditional methods lack high motivational content, as well as objective standardised analytical methods for evaluating a patient's performance and assessment of therapy effectiveness. Despite all the advances in machine mediated therapies, there is still a need to improve therapy tools. This chapter describes a new approach to robot assisted neuro-rehabilitation for upper limb rehabilitation. Gentle/S introduces a new approach on the integration of appropriate haptic technologies to high quality virtual environments, so as to deliver challenging and meaningful therapies to people with upper limb impairment in consequence of a stroke. The described approach can enhance traditional therapy tools, provide therapy "on demand" and can present accurate objective measurements of a patient's progression. Our recent studies suggest the use of tele-presence and VR-based systems can potentially motivate patients to exercise for longer periods of time. Two identical prototypes have undergone extended clinical trials in the UK and Ireland with a cohort of 30 stroke subjects. From the lessons learnt with the Gentle/S approach, it is clear also that high quality therapy devices of this nature have a role in future delivery of stroke rehabilitation, and machine mediated therapies should be available to patient and his/her clinical team from initial hospital admission, through to long term placement in the patient's home following hospital discharge.
Resumo:
Stroke is a leading cause of disability in particular affecting older people. Although the causes of stroke are well known and it is possible to reduce these risks, there is still a need to improve rehabilitation techniques. Early studies in the literature suggest that early intensive therapies can enhance a patient's recovery. According to physiotherapy literature, attention and motivation are key factors for motor relearning following stroke. Machine mediated therapy offers the potential to improve the outcome of stroke patients engaged on rehabilitation for upper limb motor impairment. Haptic interfaces are a particular group of robots that are attractive due to their ability to safely interact with humans. They can enhance traditional therapy tools, provide therapy "on demand" and can present accurate objective measurements of a patient's progression. Our recent studies suggest the use of tele-presence and VR-based systems can potentially motivate patients to exercise for longer periods of time. The creation of human-like trajectories is essential for retraining upper limb movements of people that have lost manipulation functions following stroke. By coupling models for human arm movement with haptic interfaces and VR technology it is possible to create a new class of robot mediated neuro rehabilitation tools. This paper provides an overview on different approaches to robot mediated therapy and describes a system based on haptics and virtual reality visualisation techniques, where particular emphasis is given to different control strategies for interaction derived from minimum jerk theory and the aid of virtual and mixed reality based exercises.
Resumo:
This paper presents a new strategy for controlling rigid-robot manipulators in the presence of parametric uncertainties or un-modelled dynamics. The strategy combines an adaptation law with a well known robust controller proposed by Spong, which is derived using Lyapunov's direct method. Although the tracking problem of manipulators has been successfully solved with different strategies, there are some conditions under which their efficiency is limited. Specifically, their performance decreases when unknown loading masses or model disturbances are introduced. The aim of this work is to show that the proposed strategy performs better than existing algorithms, as verified with real-time experimental results with a Puma-560 robot. (c) 2006 Elsevier Ltd. All rights reserved.