42 resultados para retail food environment
Resumo:
Background: In mammals, early-life environmental variations appear to affect microbial colonization and therefore competent immune development, and exposure to farm environments in infants has been inversely correlated with allergy development. Modelling these effects using manipulation of neonatal rodents is difficult due to their dependency on the mother, but the relatively independent piglet is increasingly identified as a valuable translational model for humans. This study was designed to correlate immune regulation in piglets with early-life environment. Methods: Piglets were nursed by their mother on a commercial farm, while isolatorreared siblings were formula fed. Fluorescence immunohistology was used to quantify T-reg and effector T-cell populations in the intestinal lamina propria and the systemic response to food proteins was quantified by capture ELISA. Results: There was more CD4+ and CD4+CD25+ effector T-cell staining in the intestinal mucosa of the isolator-reared piglets compared with their farm-reared counterparts. In contrast, these isolator-reared piglets had a significantly reduced CD4+CD25+Foxp3+ regulatory T-cell population compared to farm-reared littermates, resulting in a significantly higher T-reg-to-effector ratio in the farm animals. Consistent with these findings, isolator-reared piglets had an increased serum IgG anti-soya response to novel dietary soya protein relative to farm-reared piglets. Conclusion: Here, we provide the first direct evidence, derived from intervention, that components of the early-life environment present on farms profoundly affects both local development of regulatory components of the mucosal immune system and immune responses to food proteins at weaning. We propose that neonatal piglets provide a tractable model which allows maternal and treatment effects to be statistically separated.
Resumo:
The use of antibiotics in birds and animals intended for human consumption within the European Union (EU) and elsewhere has been subject to regulation prohibiting the use of antimicrobials as growth promoters and the use of last resort antibiotics in an attempt to reduce the spread of multi-resistant Gram negative bacteria. Given the inexorable spread of antibiotic resistance there is an increasing need for improved monitoring of our food. Using selective media, Gram negative bacteria were isolated from retail chicken of UK-Intensively reared (n = 27), Irish-Intensively reared (n = 19) and UK-Free range (n = 30) origin and subjected to an oligonucleotide based array system for the detection of 47 clinically relevant antibiotic resistance genes (ARGs) and two integrase genes. High incidences of β-lactamase genes were noted in all sample types, acc (67%), cmy (80%), fox (55%) and tem (40%) while chloramphenicol resistant determinants were detected in bacteria from the UK poultry portions and were absent in bacteria from the Irish samples. Denaturing Gradient Gel Electrophoresis (DGGE) was used to qualitatively analyse the Gram negative population in the samples and showed the expected diversity based on band stabbing and DNA sequencing. The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population.
Resumo:
There are potential conflicts between food security, biodiversity conservation and ecosystem services. Currently, there are still gaps in our understanding on the links between land use, biodiversity and ecosystem services; all have implications for sustainable agriculture. To improve food productivity in an ecologically friendly manner we should consider adapting current pest control techniques from being reliant on chemical means towards a more integrated approach. However, to do this, farmers and land owners require more information in order to make informed decisions. This brief review explores field level and landscape scale impacts on aphid control by their natural enemies. This will be done by exploring the effects of local field margin flower strips and two key landscape scale factors, winter wheat and lowland calcareous grasslands on aphids and their natural enemies. Research questions which need answering are discussed.
Resumo:
Milk is the largest source of iodine in UK diets and an earlier study showed that organic summer milk had significantly lower iodine concentration than conventional milk. There are no comparable studies with winter milk or the effect of milk fat class or heat processing method. Two retail studies with winter milk are reported. Study 1 showed no effect of fat class but organic milk was 32.2% lower in iodine than conventional milk (404 vs. 595 μg/L; P < 0.001). Study 2 found no difference between conventional and Channel Island milk but organic milk contained 35.5% less iodine than conventional milk (474 vs. 306 μg/L; P < 0.001). UHT and branded organic milk also had lower iodine concentrations than conventional milk (331 μg/L; P < 0.001 and 268 μg/L: P < 0.0001 respectively). The results indicate that replacement of conventional milk by organic or UHT milk will increase the risk of sub-optimal iodine status especially for pregnant/lactating women.
Resumo:
This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (P < 0.01). Meat was rich in cis-monounsaturated fatty acids, although organic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; P < 0.001). Organic meat was also lower (P < 0.001) in 18:3 n−3 (115 vs. 180 mg/100 g) and, whilst it contained more (P < 0.001) docosahexaenoic acid (30.9 vs. 13.7 mg/100 g), this was due to the large effect of one supermarket. This system by supermarket interaction suggests that poultry meat labelled as organic is not a guarantee of higher long chain n−3 fatty acids. Overall there were few major differences in fatty acid contents/profiles between organic and conventional meat that were consistent across all supermarkets.
Resumo:
Income growth in highly industrialised countries has resulted in consumer choice of foodstuffs no longer being primarily influenced by basic factors such as price and organoleptic features. From this perspective, the present study sets out to evaluate how and to what extent consumer choice is influenced by the possible negative effects on health and environment caused by the consumption of fruit containing deposits of pesticides and chemical products. The study describes the results of a survey which explores and estimates consumer willingness to pay in two forms: a yearly contribution for the abolition of the use of pesticides on fruit, and a premium price for organically grown apples guaranteed by a certified label. The same questionnaire was administered to two samples. The first was a conventional face-to-face survey of customers of large retail outlets located around Bologna (Italy); the second was an Internet sample. The discrete choice data were analysed by means of probit and tobit models to estimate the utility consumers attribute to organically grown fruit and to a pesticide ban. The research also addresses questions of validity and representativeness as a fundamental problem in web-based surveys.
Resumo:
Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soybean, maize and rice. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soybean at the global and country levels, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index, gross primary production and canopy height better than in the standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an Earth system and crop yield model perspective is encouraging. However, more effort is needed to develop the parametrisation of the model for specific applications. Key future model developments identified include the introduction of processes such as irrigation and nitrogen limitation which will enable better representation of the spatial variability in yield.
Resumo:
Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilisers. ● Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future.
Resumo:
This study investigates the quality of retail milk labelled as Jersey & Guernsey (JG) when compared with milk without breed specifications (NS) and repeatability of differences over seasons and years. 16 different brands of milk (4 Jersey & Guernsey, 12 non specified breed) were sampled over 2 years on 4 occasions. JG milk was associated with both favourable traits for human health, such as the higher total protein, total casein, α-casein, β-casein, κ-casein and α-tocopherol contents, and unfavourable traits, such as the higher concentrations of saturated fat, C12:0, C14:0 and lower concentrations of monounsaturated fatty acids. In summer, JG milk had a higher omega-3:omega-6 ratio than had NS milk. Also, the relative increase in omega-3 fatty acids and α-tocopherol, from winter to summer, was greater in JG milk. The latter characteristic could be of use in breeding schemes and farming systems producing niche dairy products. Seasonality had a more marked impact on the fatty acid composition of JG milk than had NS milk, while the opposite was found for protein composition. Potential implication for the findings in human health, producers, industry and consumers are considered.
Resumo:
Carbon and nitrogen stable isotope ratios of 45 human and 23 faunal bone collagen samples were measured to study human diet and the management of domestic herbivores in past Jordan, contrasting skeletal remains from the Middle and Late Bronze Age and the Late Roman and Byzantine periods from the site of Ya'amūn near Irbid. The isotope data demonstrate that the management of the sheep and goats changed over time, with the earlier animals consuming more plants from semi-arid habitats, possibly because of transhumant herding strategies. The isotope data for fish presented here are the first from archaeological contexts from the Southern Levant. Although fish of diverse provenance was available at the site, human diet was predominately based on terrestrial resources and there was little dietary variability within each time-period. Isotopic variation between humans from different time-periods can mostly be explained by ‘baseline shifts’ in the available food sources; however, it is suggested that legumes may have played a more significant role in Middle and Late Bronze Age diet than later on.
Resumo:
Climate change, a quintessential environmental problem, is generally recognised as the most important development challenge in the 21st century (IPCC, 2014). In addition to acknowledging its many significant direct consequences, climate change is increasingly used to frame discussions on other important global challenges, such as health, energy and food security. This chapter provides understanding of the intricate and complex relationship between climate change, environment and development.
Resumo:
Food industry is critical to any nation’s health and well-being; it is also critical to the economic health of a nation, since it can typically constitute over a fifth of the nation’s manufacturing GDP. Food Engineering is a discipline that ought to be at the heart of the food industry. Unfortunately, this discipline is not playing its rightful role today: engineering has been relegated to play the role of a service provider to the food industry, instead of it being a strategic driver for the very growth of the industry. This paper hypothesises that food engineering discipline, today, seems to be continuing the way it was in the last century, and has not risen to the challenges that it really faces. This paper therefore categorises the challenges as those being posed by: 1. Business dynamics, 2. Market forces, 3. Manufacturing environment and 4. Environmental Considerations, and finds the current scope and subject-knowledge competencies of food engineering to be inadequate in meeting these challenges. The paper identifies: a) health, b) environment and c) security as the three key drivers of the discipline, and proposes a new definition of food engineering. This definition requires food engineering to have a broader science base which includes biophysical, biochemical and health sciences, in addition to engineering sciences. This definition, in turn, leads to the discipline acquiring a new set of subject-knowledge competencies that is fit-for-purpose for this day and age, and hopefully for the foreseeable future. The possibility of this approach leading to the development of a higher education program in food engineering is demonstrated by adopting a theme based curriculum development with five core themes, supplemented by appropriate enabling and knowledge integrating courses. At the heart of this theme based approach is an attempt to combine engineering of process and product in a purposeful way, termed here as Food Product Realisation Engineering. Finally, the paper also recommends future development of two possible niche specialisation programs in Nutrition and Functional Food Engineering and Gastronomic Engineering. It is hoped that this reconceptualization of the discipline will not only make it more purposeful for the food industry, but it will also make the subject more intellectually challenging and attract bright young minds to the discipline.