55 resultados para quantum mechanical calculations
Resumo:
Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification.
Resumo:
Gamow's explanation of the exponential decay law uses complex 'eigenvalues' and exponentially growing 'eigenfunctions'. This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any wavefunction is given by its expansion in generalized eigenfunctions, we shall answer this question in the most straightforward manner, which at the same time is accessible to graduate students and specialists. Moreover, the presentation can well be used in physics lectures to students.
Resumo:
Three new phenylmercury(II) and one mercury(II) dithiocarbamate complexes viz. PhHg S2CN(PyCH2) Bz (1), PhHg S2CN(PyCH2)CH3 (2), PhHg S2CN(Bz)CH3 (3), and [Hg (NCS2(PyCH2)Bz)(2)] (4) (Py = pyridine; Bz = benzyl) have been synthesized and characterized by elemental analyses, IR, electronic absorption, H-1 and C-13 NMR spectroscopy. The crystal structures of 1, 2 and 3 showed a linear S-Hg-C core at the centre of the molecule, in which the metal atom is bound to the sulfur atom of the dithiocarbamate ligand and a carbon atom of the aromatic ring. In contrast the crystal structure of 4 showed a linear S-Hg-S core at the Hg(II) centre of the molecule. Weak intermolecular Hg center dot center dot center dot N (Py) interactions link molecules into a linear chain in the case of 1, whereas chains of dimers are formed in 2 through intermolecular Hg center dot center dot center dot N (Py) and Hg center dot center dot center dot S interactions. 3 forms a conventional face-to-edge dimeric structure through intermolecular Hg center dot center dot center dot S secondary bonding and 4 forms a linear chain of dimers through face-to-face Hg center dot center dot center dot S secondary bonding. In order to elucidate the nature of these secondary bonding interactions and the electronic absorption spectra of the complexes, ab initio quantum chemical calculations at the MP2 level and density functional theory calculations were carried out for 1-3. Complexes 1 and 2 exhibited photoluminescent properties in the solid state as well as in the solution phase. Studies indicate that Hg center dot center dot center dot S interactions decrease and Hg center dot center dot center dot N interactions increase the chances of photoluminescence in the solid phase
Resumo:
The readily available complex 1,1-dibromo-2-ferrocenylethylene provides a convenient entry point for the preparation of a wide range of cross-conjugated 1,1-bis(alkynyl)-2-ferrocenylethenes through simple Pd(0)/Cu(I)-mediated cross-coupling reactions with 1-alkynes. The ferrocene moiety in compounds of the general form FcCHC(CCR)2 is essentially electronically isolated from the cross-conjugated π system, as evidenced by IR and UV−vis spectroelectrochemical experiments and quantum chemical calculations. In contrast to the other examples which give stable ferrocenium derivatives upon electrochemical oxidation, the aniline derivatives [FcCHC(CCC6H4NH2-4)2]+ and [FcCHC(CCC6H4NMe2-4)2]+ proved to be unstable on the time scale of the spectroelectrochemical experiments, leading to passivation of the electrode surface over time. There is no significant thermodynamic stabilization of the radical anion [FcCHC(CCC6H4NO2-4)2]− relative to the neutral and dianionic analogues, although the dianion [FcCHC(CCC6H4NO2- 4)2]2− could be studied as a relatively chemically stable species and is well described in terms of two linked nitrophenyl radicals. The capacity to introduce a relatively isolated point charge at the periphery of the cross-conjugated π system appears to make these complexes useful templates for the construction of electrochemically gated quantum interference transistors.
Resumo:
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.
Resumo:
We report vibrational configuration interaction calculations of the monomer fundamentals of (H2O)(2), (D2O)(2), (H2O)(3), and (D2O)(3) using the code MULTIMODE and full dimensional ab initio-based global potential energies surfaces (PESs). For the dimer the HBB PES [Huang , J. Chem. Phys 128, 034312 (2008)] is used and for the trimer a new PES, reported here, is used. The salient properties of the new trimer PES are presented and compared to previous single-point calculations and the vibrational energies are compared with experiments. (C) 2008 American Institute of Physics.
Resumo:
We report an extended version of our normal coordinate program ASYM40, which may be used to transform Cartesian force constants from ab initio calculations to a force field in nonredundant internal (symmetry) coordinates. When experimental data are available, scale factors for the theoretical force field may then be optimized by least-squares refinement. The alternative of refining an empirical force field to fit a wide variety of data, as with the previous version ASYM20, has been retained. We compare the results of least-squares refinement of the full harmonic force field with least-squares refinement of only the scale factors for an SCF calculated force field and conclude that the latter approach may be useful for large molecules where more sophisticated calculations are impractical. The refinement of scale factors for a theoretical force field is also useful when there are only limited spectroscopic data. The program will accept ab initio calculated force fields from any program that presents Cartesian force constants as output. The program is available through Quantum Chemistry Program Exchange.
Resumo:
The theory of harmonic force constant refinement calculations is reviewed, and a general-purpose program for force constant and normal coordinate calculations is described. The program, called ASYM20. is available through Quantum Chemistry Program Exchange. It will work on molecules of any symmetry containing up to 20 atoms and will produce results on a series of isotopomers as desired. The vibrational secular equations are solved in either nonredundant valence internal coordinates or symmetry coordinates. As well as calculating the (harmonic) vibrational wavenumbers and normal coordinates, the program will calculate centrifugal distortion constants, Coriolis zeta constants, harmonic contributions to the α′s. root-mean-square amplitudes of vibration, and other quantities related to gas electron-diffraction studies and thermodynamic properties. The program will work in either a predict mode, in which it calculates results from an input force field, or in a refine mode, in which it refines an input force field by least squares to fit observed data on the quantities mentioned above. Predicate values of the force constants may be included in the data set for a least-squares refinement. The program is written in FORTRAN for use on a PC or a mainframe computer. Operation is mainly controlled by steering indices in the input data file, but some interactive control is also implemented.
Time-resolved gas-phase kinetic and quantum chemical studies of the reaction of silylene with oxygen
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O-2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.08 +/- 0.04) + (1.57 +/- 0.32 kJ mol(-1))/RT ln10 The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H2SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O + SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T -> S process in H2SiOO. This process has a small spin orbit coupling matrix element, consistent with an estimate of its rate constant of 1 x 10(9) s(-1) obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O-2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2 + O-2 and SiCl2 + O-2.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with NO. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 299-592 K. The second-order rate constants at 10 Torr fitted the Arrhenius equation log(k/cm(3) molecule(-1) s(-1)) = (- 11.66 +/- 0.01) + (6.20 +/- 0.10 kJ mol(-1))IRT In 10 The rate constants showed a variation with pressure of a factor of ca. 2 over the available range, almost independent of temperature. The data could not be fitted by RRKM calculations to a simple third body assisted association reaction alone. However, a mechanistic model with an additional (pressure independent) side channel gave a reasonable fit to the data. Ab initio calculations at the G3 level supported a mechanism in which the initial adduct, bent H2SiNO, can ring close to form cyclo-H2SiNO, which is partially collisionally stabilized. In addition, bent H2SiNO can undergo a low barrier isomerization reaction leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are NH2 + SiO. The rate controlling barrier for this latter pathway is only 16 kJ mol(-1) below the energy of SiH2 + NO. This is consistent with the kinetic findings. A particular outcome of this work is that, despite the pressure dependence and the effects of the secondary barrier (in the side reaction), the initial encounter of SiH2 with NO occurs at the collision rate. Thus, silylene can be as reactive with odd electron molecules as with many even electron species. Some comparisons are drawn with the reactions of CH2 + NO and SiCl2 + NO.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of both silacyclopent-3-ene and phenylsilane, have been carried out to obtain second-order rate constants for its reaction with CH3Cl. The reaction was studied in the gas phase at six temperatures in the range 294-606 K. The second-order rate constants gave a curved Arrhenius plot with a minimum value at T approximate to 370 K. The reaction showed no pressure dependence in the presence of up to 100 Torr SF6. The rate constants, however, showed a weak dependence on laser pulse energy. This suggests an interpretation requiring more than one contributing reaction pathway to SiH2 removal. Apart from a direct reaction of SiH2 with CH3Cl, reaction of SiH2 with CH3 (formed by photodissociation of CH3Cl) seems probable, with contributions of up to 30% to the rates. Ab initio calculations (G3 level) show that the initial step of reaction of SiH2 with CH3Cl is formation of a zwitterionic complex (ylid), but a high-energy barrier rules out the subsequent insertion step. On the other hand, the Cl-abstraction reaction leading to CH3 + ClSiH2 has a low barrier, and therefore, this seems the most likely candidate for the main reaction pathway of SiH2 with CH3Cl. RRKM calculations on the abstraction pathway show that this process alone cannot account for the observed temperature dependence of the rate constants. The data are discussed in light of studies of other silylene reactions with haloalkanes.
Resumo:
Time resolved studies of silylene, SiH2, generated by the 193 nm laser. ash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reactions with methyl-, dimethyl- and trimethyl-silanes in the gas phase. The reactions were studied over the pressure range 3 - 100 Torr with SF6 as bath gas and at five temperatures in the range 300 - 625 K. Only slight pressure dependences were found for SiH2 + MeSiH3 ( 485 and 602 K) and for SiH2 + Me2SiH2 ( 600 K). The high pressure rate constants gave the following Arrhenius parameters: [GRAPHICS] These are consistent with fast, near to collision-controlled, association processes. RRKM modelling calculations are consistent with the observed pressure dependences ( and also the lack of them for SiH2 + Me3SiH). Ab initio calculations at both second order perturbation theory (MP2) and coupled cluster (CCSD(T)) levels, showed the presence of weakly-bound complexes along the reaction pathways. In the case of SiH2 + MeSiH3 two complexes, with different geometries, were obtained consistent with earlier studies of SiH2 + SiH4. These complexes were stabilised by methyl substitution in the substrate silane, but all had exceedingly low barriers to rearrangement to product disilanes. Although methyl groups in the substrate silane enhance the intrinsic SiH2 insertion rates, it is doubtful whether the intermediate complexes have a significant effect on the kinetics. A further calculation on the reaction MeSiH + SiH4 shows that the methyl substitution in the silylene should have a much more significant kinetic effect ( as observed in other studies).
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 297 K and at 345 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied independently as a function of H2O (or D2O) and SF6 (bath gas) pressures. At a fixed pressure of SF6 (5 Torr), [SiH2] decay constants, k(obs), showed a quadratic dependence on [H2O] or [D2O]. At a fixed pressure of H2O or D2O, k(obs) Values were strongly dependent on [SF6]. The combined rate expression is consistent with a mechanism involving the reversible formation of a vibrationally excited zwitterionic donor-acceptor complex, H2Si...OH2 (or H2Si...OD2). This complex can then either be stabilized by SF6 or it reacts with a further molecule of H2O (or D2O) in the rate-determining step. Isotope effects are in the range 1.0-1.5 and are broadly consistent with this mechanism. The mechanism is further supported by RRKM theory, which shows the association reaction to be close to its third-order region of pressure (SF6) dependence. Ab initio quantum calculations, carried out at the G3 level, support the existence of a hydrated zwitterion H2Si...(OH2)(2), which can rearrange to hydrated silanol, with an energy barrier below the reaction energy threshold. This is the first example of a gas-phase-catalyzed silylene reaction.