141 resultados para physically-based model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Government targets for CO2 reductions are being progressively tightened, the Climate Change Act set the UK target as an 80% reduction by 2050 on 1990 figures. The residential sector accounts for about 30% of emissions. This paper discusses current modelling techniques in the residential sector: principally top-down and bottom-up. Top-down models work on a macro-economic basis and can be used to consider large scale economic changes; bottom-up models are detail rich to model technological changes. Bottom-up models demonstrate what is technically possible. However, there are differences between the technical potential and what is likely given the limited economic rationality of the typical householder. This paper recommends research to better understand individuals’ behaviour. Such research needs to include actual choices, stated preferences and opinion research to allow a detailed understanding of the individual end user. This increased understanding can then be used in an agent based model (ABM). In an ABM, agents are used to model real world actors and can be given a rule set intended to emulate the actions and behaviours of real people. This can help in understanding how new technologies diffuse. In this way a degree of micro-economic realism can be added to domestic carbon modelling. Such a model should then be of use for both forward projections of CO2 and to analyse the cost effectiveness of various policy measures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing1. Yet climate models used to study the attribution problem typically do not resolve the weather systems associated with damaging events2 such as the UK floods of October and November 2000. Occurring during the wettest autumn in England and Wales since records began in 17663, 4, these floods damaged nearly 10,000 properties across that region, disrupted services severely, and caused insured losses estimated at £1.3 billion (refs 5, 6). Although the flooding was deemed a ‘wake-up call’ to the impacts of climate change at the time7, such claims are typically supported only by general thermodynamic arguments that suggest increased extreme precipitation under global warming, but fail8, 9 to account fully for the complex hydrometeorology4, 10 associated with flooding. Here we present a multi-step, physically based ‘probabilistic event attribution’ framework showing that it is very likely that global anthropogenic greenhouse gas emissions substantially increased the risk of flood occurrence in England and Wales in autumn 2000. Using publicly volunteered distributed computing11, 12, we generate several thousand seasonal-forecast-resolution climate model simulations of autumn 2000 weather, both under realistic conditions, and under conditions as they might have been had these greenhouse gas emissions and the resulting large-scale warming never occurred. Results are fed into a precipitation-runoff model that is used to simulate severe daily river runoff events in England and Wales (proxy indicators of flood events). The precise magnitude of the anthropogenic contribution remains uncertain, but in nine out of ten cases our model results indicate that twentieth-century anthropogenic greenhouse gas emissions increased the risk of floods occurring in England and Wales in autumn 2000 by more than 20%, and in two out of three cases by more than 90%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Regional to global scale modelling of N flux from land to ocean has progressed to date through the development of simple empirical models representing bulk N flux rates from large watersheds, regions, or continents on the basis of a limited selection of model parameters. Watershed scale N flux modelling has developed a range of physically-based approaches ranging from models where N flux rates are predicted through a physical representation of the processes involved, through to catchment scale models which provide a simplified representation of true systems behaviour. Generally, these watershed scale models describe within their structure the dominant process controls on N flux at the catchment or watershed scale, and take into account variations in the extent to which these processes control N flux rates as a function of landscape sensitivity to N cycling and export. This paper addresses the nature of the errors and uncertainties inherent in existing regional to global scale models, and the nature of error propagation associated with upscaling from small catchment to regional scale through a suite of spatial aggregation and conceptual lumping experiments conducted on a validated watershed scale model, the export coefficient model. Results from the analysis support the findings of other researchers developing macroscale models in allied research fields. Conclusions from the study confirm that reliable and accurate regional scale N flux modelling needs to take account of the heterogeneity of landscapes and the impact that this has on N cycling processes within homogenous landscape units.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The UK has a target for an 80% reduction in CO2 emissions by 2050 from a 1990 base. Domestic energy use accounts for around 30% of total emissions. This paper presents a comprehensive review of existing models and modelling techniques and indicates how they might be improved by considering individual buying behaviour. Macro (top-down) and micro (bottom-up) models have been reviewed and analysed. It is found that bottom-up models can project technology diffusion due to their higher resolution. The weakness of existing bottom-up models at capturing individual green technology buying behaviour has been identified. Consequently, Markov chains, neural networks and agent-based modelling are proposed as possible methods to incorporate buying behaviour within a domestic energy forecast model. Among the three methods, agent-based models are found to be the most promising, although a successful agent approach requires large amounts of input data. A prototype agent-based model has been developed and tested, which demonstrates the feasibility of an agent approach. This model shows that an agent-based approach is promising as a means to predict the effectiveness of various policy measures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of the Chemistry‐Climate Model Validation (CCMVal) activity is to improve understanding of chemistry‐climate models (CCMs) through process‐oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozonedepleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal‐2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry‐climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere‐stratosphere chemistry, and non‐orographic gravity‐wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The societal need for reliable climate predictions and a proper assessment of their uncertainties is pressing. Uncertainties arise not only from initial conditions and forcing scenarios, but also from model formulation. Here, we identify and document three broad classes of problems, each representing what we regard to be an outstanding challenge in the area of mathematics applied to the climate system. First, there is the problem of the development and evaluation of simple physically based models of the global climate. Second, there is the problem of the development and evaluation of the components of complex models such as general circulation models. Third, there is the problem of the development and evaluation of appropriate statistical frameworks. We discuss these problems in turn, emphasizing the recent progress made by the papers presented in this Theme Issue. Many pressing challenges in climate science require closer collaboration between climate scientists, mathematicians and statisticians. We hope the papers contained in this Theme Issue will act as inspiration for such collaborations and for setting future research directions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A physically based gust parameterisation is added to the atmospheric mesoscale model FOOT3DK to estimate wind gusts associated with storms over West Germany. The gust parameterisation follows the Wind Gust Estimate (WGE) method and its functionality is verified in this study. The method assumes that gusts occurring at the surface are induced by turbulent eddies in the planetary boundary layer, deflecting air parcels from higher levels down to the surface under suitable conditions. Model simulations are performed with horizontal resolutions of 20 km and 5 km. Ten historical storm events of different characteristics and intensities are chosen in order to include a wide range of typical storms affecting Central Europe. All simulated storms occurred between 1990 and 1998. The accuracy of the method is assessed objectively by validating the simulated wind gusts against data from 16 synoptic stations by means of “quality parameters”. Concerning these parameters, the temporal and spatial evolution of the simulated gusts is well reproduced. Simulated values for low altitude stations agree particularly well with the measured gusts. For orographically exposed locations, the gust speeds are partly underestimated. The absolute maximum gusts lie in most cases within the bounding interval given by the WGE method. Focussing on individual storms, the performance of the method is better for intense and large storms than for weaker ones. Particularly for weaker storms, the gusts are typically overestimated. The results for the sample of ten storms document that the method is generally applicable with the mesoscale model FOOT3DK for mid-latitude winter storms, even in areas with complex orography.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photoelectron spectroscopy and scanning tunneling microscopy have been used to investigate how the oxidation state of Ce in CeO2-x(111) ultrathin films is influenced by the presence of Pd nanoparticles. Pd induces an increase in the concentration of Ce3+ cations, which is interpreted as charge transfer from Pd to CeO2-x(111) on the basis of DFT+U calculations. Charge transfer from Pd to Ce4+ is found to be energetically favorable even for individual Pd adatoms. These results have implications for our understanding of the redox behavior of ceria-based model catalyst systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces a new agent-based model, which incorporates the actions of individual homeowners in a long-term domestic stock model, and details how it was applied in energy policy analysis. The results indicate that current policies are likely to fall significantly short of the 80% target and suggest that current subsidy levels need re-examining. In the model, current subsidy levels appear to offer too much support to some technologies, which in turn leads to the suppression of other technologies that have a greater energy saving potential. The model can be used by policy makers to develop further scenarios to find alternative, more effective, sets of policy measures. The model is currently limited to the owner-occupied stock in England, although it can be expanded, subject to the availability of data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilise the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross-section geometry and channel long-profile variability on flood dynamics is examined using an ensemble of a 1D-2D hydraulic model (LISFLOOD-FP) of the 1:2102 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of hypothetical scenarios of channel morphology were constructed based on a simple velocity based model of critical entrainment. A Monte-Carlo simulation framework was used to quantify the effects of channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics, and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected a good approximation of the observed patterns of spatial erosion despite its overestimation of erosion depths. The effect of uncertainty on channel long-profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel-bed rivers like the one used in this research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean prediction systems are now able to analyse and predict temperature, salinity and velocity structures within the ocean by assimilating measurements of the ocean’s temperature and salinity into physically based ocean models. Data assimilation combines current estimates of state variables, such as temperature and salinity, from a computational model with measurements of the ocean and atmosphere in order to improve forecasts and reduce uncertainty in the forecast accuracy. Data assimilation generally works well with ocean models away from the equator but has been found to induce vigorous and unrealistic overturning circulations near the equator. A pressure correction method was developed at the University of Reading and the Met Office to control these circulations using ideas from control theory and an understanding of equatorial dynamics. The method has been used for the last 10 years in seasonal forecasting and ocean prediction systems at the Met Office and European Center for Medium-range Weather Forecasting (ECMWF). It has been an important element in recent re-analyses of the ocean heat uptake that mitigates climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the available potential energy (APE) framework of Winters et al. (J. Fluid Mech., vol. 289, 1995, p. 115) is extended to the fully compressible Navier– Stokes equations, with the aims of clarifying (i) the nature of the energy conversions taking place in turbulent thermally stratified fluids; and (ii) the role of surface buoyancy fluxes in the Munk & Wunsch (Deep-Sea Res., vol. 45, 1998, p. 1977) constraint on the mechanical energy sources of stirring required to maintain diapycnal mixing in the oceans. The new framework reveals that the observed turbulent rate of increase in the background gravitational potential energy GPEr , commonly thought to occur at the expense of the diffusively dissipated APE, actually occurs at the expense of internal energy, as in the laminar case. The APE dissipated by molecular diffusion, on the other hand, is found to be converted into internal energy (IE), similar to the viscously dissipated kinetic energy KE. Turbulent stirring, therefore, does not introduce a new APE/GPEr mechanical-to-mechanical energy conversion, but simply enhances the existing IE/GPEr conversion rate, in addition to enhancing the viscous dissipation and the entropy production rates. This, in turn, implies that molecular diffusion contributes to the dissipation of the available mechanical energy ME =APE +KE, along with viscous dissipation. This result has important implications for the interpretation of the concepts of mixing efficiency γmixing and flux Richardson number Rf , for which new physically based definitions are proposed and contrasted with previous definitions. The new framework allows for a more rigorous and general re-derivation from the first principles of Munk & Wunsch (1998, hereafter MW98)’s constraint, also valid for a non-Boussinesq ocean: G(KE) ≈ 1 − ξ Rf ξ Rf Wr, forcing = 1 + (1 − ξ )γmixing ξ γmixing Wr, forcing , where G(KE) is the work rate done by the mechanical forcing, Wr, forcing is the rate of loss of GPEr due to high-latitude cooling and ξ is a nonlinearity parameter such that ξ =1 for a linear equation of state (as considered by MW98), but ξ <1 otherwise. The most important result is that G(APE), the work rate done by the surface buoyancy fluxes, must be numerically as large as Wr, forcing and, therefore, as important as the mechanical forcing in stirring and driving the oceans. As a consequence, the overall mixing efficiency of the oceans is likely to be larger than the value γmixing =0.2 presently used, thereby possibly eliminating the apparent shortfall in mechanical stirring energy that results from using γmixing =0.2 in the above formula.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[1] We present a new, process-based model of soil and stream water dissolved organic carbon (DOC): the Integrated Catchments Model for Carbon (INCA-C). INCA-C is the first model of DOC cycling to explicitly include effects of different land cover types, hydrological flow paths, in-soil carbon biogeochemistry, and surface water processes on in-stream DOC concentrations. It can be calibrated using only routinely available monitoring data. INCA-C simulates daily DOC concentrations over a period of years to decades. Sources, sinks, and transformation of solid and dissolved organic carbon in peat and forest soils, wetlands, and streams as well as organic carbon mineralization in stream waters are modeled. INCA-C is designed to be applied to natural and seminatural forested and peat-dominated catchments in boreal and temperate regions. Simulations at two forested catchments showed that seasonal and interannual patterns of DOC concentration could be modeled using climate-related parameters alone. A sensitivity analysis showed that model predictions were dependent on the mass of organic carbon in the soil and that in-soil process rates were dependent on soil moisture status. Sensitive rate coefficients in the model included those for organic carbon sorption and desorption and DOC mineralization in the soil. The model was also sensitive to the amount of litter fall. Our results show the importance of climate variability in controlling surface water DOC concentrations and suggest the need for further research on the mechanisms controlling production and consumption of DOC in soils.