175 resultados para phosphorus nutrition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: In UK hospitals, the preparation of all total parenteral nutrition (TPN) products must be made in the pharmacy as TPNs are categorised as high-risk injectables (NPSA/2007/20). The National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors in the UK since August 2003. This study reports on types of error associated with the preparation of TPNs, including the stage at which these were identified and potential and actual patient outcomes. Methods: Reports of compounding errors for the period 1/2004 - 3/2007 were analysed on an Excel spreadsheet. Results: Of a total of 3691 compounding error reports, 674 (18%) related to TPN products; 548 adult vs. 126 paediatric. A significantly higher proportion of adult TPNs (28% vs. 13% paediatric) were associated with labelling errors and a significantly higher proportion of paediatric TPNs (25% vs. 15% adult) were associated with incorrect transcriptions (Chi-Square Test; p<0.005). Labelling errors were identified equally by pharmacists (42%) and technicians (48%) with technicians detecting mainly at first check and pharmacists at final check. Transcription errors were identified mainly by technicians (65% vs. 27% pharmacist) at first check. Incorrect drug selection (13%) and calculation errors (9%) were associated with adult and paediatric TPN preparations in the same ratio. One paediatric TPN error detected at first check was considered potentially catastrophic; 31 (5%) errors were considered of major and 38 (6%) of moderate potential consequence. Five errors (2 moderate, 1 minor) were identified during or after administration. Conclusions: While recent UK patient safety initiatives are aimed at improving the safety of injectable medicines in clinical areas, the current study highlights safety problems that exist within pharmacy production units. This could be used in the creation of an error management tool for TPN compounding processes within hospital pharmacies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high throughput techniques ('chip' technology) for measurement of gene expression and gene polymorphisms (genomics), and techniques for measuring global protein expression (proteomics) and metabolite profile (metabolomics) are revolutionising life science research, including research in human nutrition. In particular, the ability to undertake large-scale genotyping and to identify gene polymorphisms that determine risk of chronic disease (candidate genes) could enable definition of an individual's risk at an early age. However, the search for candidate genes has proven to be more complex, and their identification more elusive, than previously thought. This is largely due to the fact that much of the variability in risk results from interactions between the genome and environmental exposures. Whilst the former is now very well defined via the Human Genome Project, the latter (e.g. diet, toxins, physical activity) are poorly characterised, resulting in inability to account for their confounding effects in most large-scale candidate gene studies. The polygenic nature of most chronic diseases offers further complexity, requiring very large studies to disentangle relatively weak impacts of large numbers of potential 'risk' genes. The efficacy of diet as a preventative strategy could also be considerably increased by better information concerning gene polymorphisms that determine variability in responsiveness to specific diet and nutrient changes. Much of the limited available data are based on retrospective genotyping using stored samples from previously conducted intervention trials. Prospective studies are now needed to provide data that can be used as the basis for provision of individualised dietary advice and development of food products that optimise disease prevention. Application of the new technologies in nutrition research offers considerable potential for development of new knowledge and could greatly advance the role of diet as a preventative disease strategy in the 21st century. Given the potential economic and social benefits offered, funding for research in this area needs greater recognition, and a stronger strategic focus, than is presently the case. Application of genomics in human health offers considerable ethical and societal as well as scientific challenges. Economic determinants of health care provision are more likely to resolve such issues than scientific developments or altruistic concerns for human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information is provided on phosphorus in the River Kennet and the adjacent Kennet and Avon Canal in southern England to assess their interactions and the changes following phosphorus reductions in sewage treatment work (STW) effluent inputs. A step reduction in soluble reactive phosphorus (SRP) concentration within the effluent (5 to 13 fold) was observed from several STWs discharging to the river in the mid-2000s. This translated to over halving of SRP concentrations within the lower Kennet. Lower Kennet SRP concentrations change from being highest under base-flow to highest under storm-flow conditions. This represented a major shift from direct effluent inputs to a within-catchment source dominated system characteristic of the upper part to the catchment. Average SRP concentrations in the lower Kennet reduced over time towards the target for good water quality. Critically, there was no corresponding reduction in chlorophyll-a concentration, the waters remaining eutrophic when set against standards for lakes. Following the up gradient input of the main water and SRP source (Wilton Water), SRP concentrations in the canal reduced down gradient to below detection limits at times near its junction with the Kennet downstream. However, chlorophyll concentrations in the canal were in an order of magnitude higher than in the river. This probably resulted from long water residence times and higher temperatures promoting progressive algal and suspended sediment generations that consumed SRP. The canal acted as a point source for sediment, algae and total phosphorus to the river especially during the summer months when boat traffic disturbed the canal's bottom sediments and the locks were being regularly opened. The short-term dynamics of this transfer was complex. For the canal and the supply source at Wilton Water, conditions remained hypertrophic when set against standards for lakes even when SRP concentrations were extremely low.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment and P inputs to freshwaters from agriculture are a major problem in the United Kingdom (UK). This study investigated mitigation options for diffuse pollution losses from arable land. Field trials were undertaken at the hillslope scale over three winters at three UK sites with silt (Oxyaquic Hapludalf), sand (Udic Haplustept), and clay (Typic Haplaquept) soils. None of the mitigation treatments was effective in every year trialled, but each showed overall average reductions in losses. Over five site years, breaking up the compaction in tramlines (tractor wheel tracks) using a tine reduced losses of sediment and P to losses similar to those observed from areas without tramlines, with an average reduction in P loss of 1.06 kg TP ha(-1) Compared to traditional plowing, TP losses under minimum tillage were reduced by 0.30 kg TT ha(-1) over five site years, TP losses under contour cultivation were reduced by 0.30 kg TP ha(-1) over two site years, and TP losses using in-field barriers were reduced by 0.24 kg TP ha(-1) over two site years. In one site year, reductions in losses due to crop residue incorporation were nor significant. Each of the mitigation options trialled. is associated with a small cost at the farm-scale of up to 5 pound ha(-1), or with cost savings. The results indicate that each of the treatments his the potential to be a cost-effective mitigation option, but that tramline management is the most promising treatment, because tramlines dominate sediment and P transfer in surface runoff from arable hillslopes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current feed evaluation systems for dairy cattle aim to match nutrient requirements with nutrient intake at pre-defined production levels. These systems were not developed to address, and are not suitable to predict, the responses to dietary changes in terms of production level and product composition, excretion of nutrients to the environment, and nutrition related disorders. The change from a requirement to a response system to meet the needs of various stakeholders requires prediction of the profile of absorbed nutrients and its subsequent utilisation for various purposes. This contribution examines the challenges to predicting the profile of nutrients available for absorption in dairy cattle and provides guidelines for further improved prediction with regard to animal production responses and environmental pollution. The profile of nutrients available for absorption comprises volatile fatty acids, long-chain fatty acids, amino acids and glucose. Thus the importance of processes in the reticulo-rumen is obvious. Much research into rumen fermentation is aimed at determination of substrate degradation rates. Quantitative knowledge on rates of passage of nutrients out of the rumen is rather limited compared with that on degradation rates, and thus should be an important theme in future research. Current systems largely ignore microbial metabolic variation, and extant mechanistic models of rumen fermentation give only limited attention to explicit representation of microbial metabolic activity. Recent molecular techniques indicate that knowledge on the presence and activity of various microbial species is far from complete. Such techniques may give a wealth of information, but to include such findings in systems predicting the nutrient profile requires close collaboration between molecular scientists and mathematical modellers on interpreting and evaluating quantitative data. Protozoal metabolism is of particular interest here given the paucity of quantitative data. Empirical models lack the biological basis necessary to evaluate mitigation strategies to reduce excretion of waste, including nitrogen, phosphorus and methane. Such models may have little predictive value when comparing various feeding strategies. Examples include the Intergovernmental Panel on Climate Change (IPCC) Tier II models to quantify methane emissions and current protein evaluation systems to evaluate low protein diets to reduce nitrogen losses to the environment. Nutrient based mechanistic models can address such issues. Since environmental issues generally attract more funding from governmental offices, further development of nutrient based models may well take place within an environmental framework.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental nutrition seeks to describe the complex biochemical reactions involved in assimilation and processing of nutrients by various tissues and organs, and to quantify nutrient movement (flux) through those processes. Over the last 25 yr, considerable progress has been made in increasing our understanding of metabolism in dairy cattle. Major advances have been made at all levels of biological organization, including the whole animal, organ systems, tissues, cells, and molecules. At the whole-animal level, progress has been made in delineating metabolism during late pregnancy and the transition to lactation, as well as in whole-body use of energy-yielding substrates and amino acids for growth in young calves. An explosion of research using multicatheterization techniques has led to better quantitative descriptions of nutrient use by tissues of the portal-drained viscera (digestive tract, pancreas, and associated adipose tissues) and liver. Isolated tissue preparations have provided important information on the interrelationships among glucose, fatty acid, and amino acid metabolism in liver, adipose tissue, and mammary gland, as well as the regulation of these pathways during different physiological states. Finally, the last 25 yr has witnessed the birth of "molecular biology" approaches to understanding fundamental nutrition. Although measurements of mRNA abundance for proteins of interest already have provided new insights into regulation of metabolism, the next 25 yr will likely see remarkable advances as these techniques continue to be applied to problems of dairy cattle biology. Integration of the "omics" technologies (functional genomics, proteomics, and metabolomics) with measurements of tissue metabolism obtained by other methods is a particularly exciting prospect for the future. The result should be improved animal health and well being, more efficient dairy production, and better models to predict nutritional requirements and provide rations to meet those requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foods derived from animals are an important source of nutrients in the diet; for example, milk and meat together provide about 60 and 55% of the dietary intake of Ca and protein respectively in the UK. However, certain aspects of some animal-derived foods, particularly their fat and saturated fatty acid (SFA) contents, have led to concerns that these foods substantially contribute to the risk of CVD, the metabolic syndrome and other chronic diseases. In most parts of Europe dairy products are the greatest single dietary source of SFA. The fatty acid composition of various animal-derived foods is, however, not constant and can, in many cases, be enhanced by animal nutrition. In particular, milk fat with reduced concentrations of the C12-16 SFA and an increased concentration of 18:1 MUFA is achievable, although enrichment with very-long-chain n-3 PUFA is much less efficient. However, there is now evidence that some animal-derived foods (notably milk products) contain compounds that may actively promote long-term health, and research is urgently required to fully characterise the benefits associated with the consumption of these compounds and to understand how the levels in natural foods can be enhanced. It is also vital that the beneficial effects are not inadvertently destroyed in the process of reducing the concentrations of SFA. In the future the role of animal nutrition in creating foods closer to the optimum composition for long-term human health is likely to become increasingly important, but production of such foods on a scale that will substantially affect national diets will require political and financial incentives and great changes in the animal production industry.