56 resultados para oocyte retrieval
Resumo:
Material encoded with reference to the self is better remembered. One interpretation of this effect is that the self operates to organise retrieval of memories. We were motivated to find out whether this organisational principle extended to everyday information and for material not explicitly related to the self. Participants generated friends' birthdays from memory and then gave their own birthday. We found that participants were particularly likely to recall birthdays from on or around the date of their own birthday. Thus, memory for birthdays clusters around self-relevant information, even when there is no specific attempt to recall self-related material. Birthdays clustered somewhat around the time of testing, important dates in the calendar, and for a close other, but not to the extent of the participants' birthdays. We suggest this is a demonstration of the organisational structure of the self in memory. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar to provide a seamless retrieval of ice water content, effective radius, and extinction coefficient from the thinnest cirrus (seen only by the lidar) to the thickest ice cloud (penetrated only by the radar). In this paper, several versions of the VarCloud retrieval are compared with the CloudSat standard ice-only retrieval of ice water content, two empirical formulas that derive ice water content from radar reflectivity and temperature, and retrievals of vertically integrated properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer. The retrieved variables typically agree to within a factor of 2, on average, and most of the differences can be explained by the different microphysical assumptions. For example, the ice water content comparison illustrates the sensitivity of the retrievals to assumed ice particle shape. If ice particles are modeled as oblate spheroids rather than spheres for radar scattering then the retrieved ice water content is reduced by on average 50% in clouds with a reflectivity factor larger than 0 dBZ. VarCloud retrieves optical depths that are on average a factor-of-2 lower than those from MODIS, which can be explained by the different assumptions on particle mass and area; if VarCloud mimics the MODIS assumptions then better agreement is found in effective radius and optical depth is overestimated. MODIS predicts the mean vertically integrated ice water content to be around a factor-of-3 lower than that from VarCloud for the same retrievals, however, because the MODIS algorithm assumes that its retrieved effective radius (which is mostly representative of cloud top) is constant throughout the depth of the cloud. These comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms and also for future studies to compare not only the mean values but also the full probability density function.
Resumo:
The Along-Track Scanning Radiometers (ATSRs) provide a long time-series of measurements suitable for the retrieval of cloud properties. This work evaluates the freely-available Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) dataset (version 3) created from the ATSR-2 (1995�2003) and Advanced ATSR (AATSR; 2002 onwards) records. Users are recommended to consider only retrievals flagged as high-quality, where there is a good consistency between the measurements and the retrieved state (corresponding to about 60% of converged retrievals over sea, and more than 80% over land). Cloud properties are found to be generally free of any significant spurious trends relating to satellite zenith angle. Estimates of the random error on retrieved cloud properties are suggested to be generally appropriate for optically-thick clouds, and up to a factor of two too small for optically-thin cases. The correspondence between ATSR-2 and AATSR cloud properties is high, but a relative calibration difference between the sensors of order 5�10% at 660 nm and 870 nm limits the potential of the current version of the dataset for trend analysis. As ATSR-2 is thought to have the better absolute calibration, the discussion focusses on this portion of the record. Cloud-top heights from GRAPE compare well to ground-based data at four sites, particularly for shallow clouds. Clouds forming in boundary-layer inversions are typically around 1 km too high in GRAPE due to poorly-resolved inversions in the modelled temperature profiles used. Global cloud fields are compared to satellite products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and a climatology of liquid water content derived from satellite microwave radiometers. In all cases the main reasons for differences are linked to differing sensitivity to, and treatment of, multi-layer cloud systems. The correlation coefficient between GRAPE and the two MODIS products considered is generally high (greater than 0.7 for most cloud properties), except for liquid and ice cloud effective radius, which also show biases between the datasets. For liquid clouds, part of the difference is linked to choice of wavelengths used in the retrieval. Total cloud cover is slightly lower in GRAPE (0.64) than the CALIOP dataset (0.66). GRAPE underestimates liquid cloud water path relative to microwave radiometers by up to 100 g m�2 near the Equator and overestimates by around 50 g m�2 in the storm tracks. Finally, potential future improvements to the algorithm are outlined.
Resumo:
The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set.
Resumo:
The Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) project has produced a global data-set of cloud and aerosol properties from the Along Track Scanning Radiometer-2 (ATSR-2) instrument, covering the time period 1995�2001. This paper presents the validation of aerosol optical depths (AODs) over the ocean from this product against AERONET sun-photometer measurements, as well as a comparison to the Advanced Very High Resolution Radiometer (AVHRR) optical depth product produced by the Global Aerosol Climatology Project (GACP). The GRAPE AOD over ocean is found to be in good agreement with AERONET measurements, with a Pearson's correlation coefficient of 0.79 and a best-fit slope of 1.0±0.1, but with a positive bias of 0.08±0.04. Although the GRAPE and GACP datasets show reasonable agreement, there are significant differences. These discrepancies are explored, and suggest that the downward trend in AOD reported by GACP may arise from changes in sampling due to the orbital drift of the AVHRR instruments.
Resumo:
The need for consistent assimilation of satellite measurements for numerical weather prediction led operational meteorological centers to assimilate satellite radiances directly using variational data assimilation systems. More recently there has been a renewed interest in assimilating satellite retrievals (e.g., to avoid the use of relatively complicated radiative transfer models as observation operators for data assimilation). The aim of this paper is to provide a rigorous and comprehensive discussion of the conditions for the equivalence between radiance and retrieval assimilation. It is shown that two requirements need to be satisfied for the equivalence: (i) the radiance observation operator needs to be approximately linear in a region of the state space centered at the retrieval and with a radius of the order of the retrieval error; and (ii) any prior information used to constrain the retrieval should not underrepresent the variability of the state, so as to retain the information content of the measurements. Both these requirements can be tested in practice. When these requirements are met, retrievals can be transformed so as to represent only the portion of the state that is well constrained by the original radiance measurements and can be assimilated in a consistent and optimal way, by means of an appropriate observation operator and a unit matrix as error covariance. Finally, specific cases when retrieval assimilation can be more advantageous (e.g., when the estimate sought by the operational assimilation system depends on the first guess) are discussed.
Resumo:
We present a new method to determine mesospheric electron densities from partially reflected medium frequency radar pulses. The technique uses an optimal estimation inverse method and retrieves both an electron density profile and a gradient electron density profile. As well as accounting for the absorption of the two magnetoionic modes formed by ionospheric birefringence of each radar pulse, the forward model of the retrieval parameterises possible Fresnel scatter of each mode by fine electronic structure, phase changes of each mode due to Faraday rotation and the dependence of the amplitudes of the backscattered modes upon pulse width. Validation results indicate that known profiles can be retrieved and that χ2 tests upon retrieval parameters satisfy validity criteria. Application to measurements shows that retrieved electron density profiles are consistent with accepted ideas about seasonal variability of electron densities and their dependence upon nitric oxide production and transport.
Resumo:
This article shows how the solution to the promotion problem—the problem of locating the optimal level of advertising in a downstream market—can be derived simply, empirically, and robustly through the application of some simple calculus and Bayesian econometrics. We derive the complete distribution of the level of promotion that maximizes producer surplus and generate recommendations about patterns as well as levels of expenditure that increase net returns. The theory and methods are applied to quarterly series (1978:2S1988:4) on red meats promotion by the Australian Meat and Live-Stock Corporation. A slightly different pattern of expenditure would have profited lamb producers
Resumo:
The Retrieval-Induced Forgetting (RIF) paradigm includes three phases: (a) study/encoding of category exemplars, (b) practicing retrieval of a sub-set of those category exemplars, and (c) recall of all exemplars. At the final recall phase, recall of items that belong to the same categories as those items that undergo retrieval-practice, but that do not undergo retrieval-practice, is impaired. The received view is that this is because retrieval of target category-exemplars (e.g., ‘Tiger’ in the category Four-legged animal) requires inhibition of non-target category-exemplars (e.g., ‘Dog’ and ‘Lion’) that compete for retrieval. Here, we used the RIF paradigm to investigate whether ignoring auditory items during the retrieval-practice phase modulates the inhibitory process. In two experiments, RIF was present when retrieval-practice was conducted in quiet and when conducted in the presence of spoken words that belonged to a category other than that of the items that were targets for retrieval-practice. In contrast, RIF was abolished when words that either were identical to the retrieval-practice words or were only semantically related to the retrieval-practice words were presented as background speech. The results suggest that the act of ignoring speech can reduce inhibition of the non-practiced category-exemplars, thereby eliminating RIF, but only when the spoken words are competitors for retrieval (i.e., belong to the same semantic category as the to-be-retrieved items).
Resumo:
The absorption coefficient of a substance distributed as discrete particles in suspension is less than that of the same material dissolved uniformly in a medium—a phenomenon commonly referred to as the flattening effect. The decrease in the absorption coefficient owing to flattening effect depends on the concentration of the absorbing pigment inside the particle, the specific absorption coefficient of the pigment within the particle, and on the diameter of the particle, if the particles are assumed to be spherical. For phytoplankton cells in the ocean, with diameters ranging from less than 1 µm to more than 100 µm, the flattening effect is variable, and sometimes pronounced, as has been well documented in the literature. Here, we demonstrate how the in vivo absorption coefficient of phytoplankton cells per unit concentration of its major pigment, chlorophyll a, can be used to determine the average cell size of the phytoplankton population. Sensitivity analyses are carried out to evaluate the errors in the estimated diameter owing to potential errors in the model assumptions. Cell sizes computed for field samples using the model are compared qualitatively with indirect estimates of size classes derived from high performance liquid chromatography data. Also, the results are compared quantitatively against measurements of cell size in laboratory cultures. The method developed is easy-to-apply as an operational tool for in situ observations, and has the potential for application to remote sensing of ocean colour data.
Resumo:
Criteria are proposed for evaluating sea surface temperature (SST) retrieved from satellite infra-red imagery: bias should be small on regional scales; sensitivity to atmospheric humidity should be small; and sensitivity of retrieved SST to surface temperature should be close to 1 K K−1. Their application is illustrated for non-linear sea surface temperature (NLSST) estimates. 233929 observations from the Advanced Very High Resolution Radiometer (AVHRR) on Metop-A are matched with in situ data and numerical weather prediction (NWP) fields. NLSST coefficients derived from these matches have regional biases from −0.5 to +0.3 K. Using radiative transfer modelling we find that a 10% increase in humidity alone can change the retrieved NLSST by between −0.5 K and +0.1 K. A 1 K increase in SST changes NLSST by <0.5 K in extreme cases. The validity of estimates of sensitivity by radiative transfer modelling is confirmed empirically.
Resumo:
We present a new coefficient-based retrieval scheme for estimation of sea surface temperature (SST) from the Along Track Scanning Radiometer (ATSR) instruments. The new coefficients are banded by total column water vapour (TCWV), obtained from numerical weather prediction analyses. TCWV banding reduces simulated regional retrieval biases to < 0.1 K compared to biases ~ 0.2 K for global coefficients. Further, detailed treatment of the instrumental viewing geometry reduces simulated view-angle related biases from ~ 0.1 K down to < 0.005 K for dual-view retrievals using channels at 11 and 12 μm. A novel analysis of trade-offs related to the assumed noise level when defining coefficients is undertaken, and we conclude that adding a small nominal level of noise (0.01 K) is optimal for our purposes. When applied to ATSR observations, some inter-algorithm biases appear as TCWV-related differences in SSTs estimated from different channel combinations. The final step in coefficient determination is to adjust the offset coefficient in each TCWV band to match results from a reference algorithm. This reference uses the dual-view observations of 3.7 and 11 μm. The adjustment is independent of in situ measurements, preserving independence of the retrievals. The choice of reference is partly motivated by uncertainty in the calibration of the 12 μm of Advanced ATSR. Lastly, we model the sensitivities of the new retrievals to changes to TCWV and changes in true SST, confirming that dual-view SSTs are most appropriate for climatological applications
Resumo:
We propose and demonstrate a fully probabilistic (Bayesian) approach to the detection of cloudy pixels in thermal infrared (TIR) imagery observed from satellite over oceans. Using this approach, we show how to exploit the prior information and the fast forward modelling capability that are typically available in the operational context to obtain improved cloud detection. The probability of clear sky for each pixel is estimated by applying Bayes' theorem, and we describe how to apply Bayes' theorem to this problem in general terms. Joint probability density functions (PDFs) of the observations in the TIR channels are needed; the PDFs for clear conditions are calculable from forward modelling and those for cloudy conditions have been obtained empirically. Using analysis fields from numerical weather prediction as prior information, we apply the approach to imagery representative of imagers on polar-orbiting platforms. In comparison with the established cloud-screening scheme, the new technique decreases both the rate of failure to detect cloud contamination and the false-alarm rate by one quarter. The rate of occurrence of cloud-screening-related errors of >1 K in area-averaged SSTs is reduced by 83%. Copyright © 2005 Royal Meteorological Society.