87 resultados para object-oriented
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
This paper tackles the path planning problem for oriented vehicles travelling in the non-Euclidean 3-Dimensional space; spherical space S3. For such problem, the orientation of the vehicle is naturally represented by orthonormal frame bundle; the rotation group SO(4). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to control systems defined on Lie groups. The oriented vehicles, in this case, are constrained to travel at constant speed in a forward direction and their angular velocities directly controlled. In this paper we identify controls that induce steady motions of these oriented vehicles and yield closed form parametric expressions for these motions. The paths these vehicles trace are defined explicitly in terms of the controls and therefore invariant with respect to the coordinate system used to describe the motion.
Resumo:
The paper describes the implementation of an offline, low-cost Brain Computer Interface (BCI) alternative to more expensive commercial models. Using inexpensive general purpose clinical EEG acquisition hardware (Truscan32, Deymed Diagnostic) as the base unit, a synchronisation module was constructed to allow the EEG hardware to be operated precisely in time to allow for recording of automatically time stamped EEG signals. The synchronising module allows the EEG recordings to be aligned in stimulus time locked fashion for further processing by the classifier to establish the class of the stimulus, sample by sample. This allows for the acquisition of signals from the subject’s brain for the goal oriented BCI application based on the oddball paradigm. An appropriate graphical user interface (GUI) was constructed and implemented as the method to elicit the required responses (in this case Event Related Potentials or ERPs) from the subject.
Resumo:
The iRODS system, created by the San Diego Supercomputing Centre, is a rule oriented data management system that allows the user to create sets of rules to define how the data is to be managed. Each rule corresponds to a particular action or operation (such as checksumming a file) and the system is flexible enough to allow the user to create new rules for new types of operations. The iRODS system can interface to any storage system (provided an iRODS driver is built for that system) and relies on its’ metadata catalogue to provide a virtual file-system that can handle files of any size and type. However, some storage systems (such as tape systems) do not handle small files efficiently and prefer small files to be packaged up (or “bundled”) into larger units. We have developed a system that can bundle small data files of any type into larger units - mounted collections. The system can create collection families and contains its’ own extensible metadata, including metadata on which family the collection belongs to. The mounted collection system can work standalone and is being incorporated into the iRODS system to enhance the systems flexibility to handle small files. In this paper we describe the motivation for creating a mounted collection system, its’ architecture and how it has been incorporated into the iRODS system. We describe different technologies used to create the mounted collection system and provide some performance numbers.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
This paper describes the novel use of agent and cellular neural Hopfield network techniques in the design of a self-contained, object detecting retina. The agents, which are used to detect features within an image, are trained using the Hebbian method which has been modified for the cellular architecture. The success of each agent is communicated with adjacent agents in order to verify the detection of an object. Initial work used the method to process bipolar images. This has now been extended to handle grey scale images. Simulations have demonstrated the success of the method and further work is planned in which the device is to be implemented in hardware.